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NEARLY OPTIMAL DETECTION OF SIGNALS IN NON-GAUSSIAN NOISE

S.V. Czarnecki and J.B. Thomas
Department of Electrical Engineering
and Computer Science
Princeton University
Princeton, NJ 08544
ABSTRACT

This dissertation addresses the problem of finding nearly
optimal detector structures for non-Gaussian noise environments.
It is assumed that the noise statistics are unknown except for
a very loose characterization. Under this condition, the goal
is to study adaptive detector structures that are simple, yet
capable of high levels of performance.

Attention is focused on the discrete-time locally optimal
detector for a constant signal in independent, ideﬁtically dis-
tributed noise. A definition for non-Gaussian noise is given,
several common univariate density models are exhibited, and
some physical non-Gaussian noise data is discussed.

Two approaches in designing adaptive detector nonlinearities
are presented, where it is assumed that the noise statistics are
approximately stationary. Both proposals utilize simple measure-
ments of the noise behavior to adapt the detector, and in several
examples the adaptive detectors are shown capable of attaining
nearly optimal performance levels. A simulation is presented
demonstrating their successful application.

The physical noise data is examined, and found to be contam-

inated with impulsive noise having a burst-like structure. This



observation suggests that a nonstationary noise model and a time-
varying detector may be éppropriate. A nonparametric structure
is proposed to detect the presence of impulsive bursts, and the
performance of the detection algorithm is evaluated. It is then
shown how information provided by the burst detector may be used
to advantage in a signal detector. Performance of the cémbined
detector structure is analyzed and found to be superior relative
to the performance of any single fixed detector structure in cer-
tain noise environments. A simulation of the proposed. structures
is presented and compared to the simulation of the previous adap-
tive detectors.

The probleﬁ of approximating known locally optimal detector
nonlinearities is eéamined and shown to be equivalent to the
minimum mean square error approximation of known nonlinearities.

A performance index for comparing the performance of subop-
timal threshold detectors operating with constant false alarm
rates is proposed and analyzed. The ratio of indices for two
detectors is shown to have appealing and useful properties in

studying non-zero signal to noise ratio detection problems.
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Introduction

1. Motivation
Extracting information from raw data in the presence of noise is the
ubiquitous problem of communication theory, and there are countless
variations on this fundamental theme. In some contexts, it is important
to estimate a signal or its parameters. In other contexts, it is desired to

detect which, if any, signal is present. Both problems have received con-

siderable theoretical and practical attention.

In this thesis, a very simple detection problem is posed: Detect the
presence (or absence) of a known constant-level signal in a sequence of
observations that is corrupted by addition of a sequence of observations
from a random noise process. The problem is further simplified by
assuming that the noise observations are statistically independent of
each other and the signal. In several cases, it is further assumed that all

noise observations are identically distributed.
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In spite of this apparent simplicity, there remain some important
issues: Namely, how does one approach the detection problem in non-
Gaussian noise environments when the noise statistics are only partially
known? What considerations are important in the design of a detection
algorithm if the goal is to achieve a high level of performance with simple
adaptive structures? How may a detector recognize an abrupt change in
ihe noise and abate its effects? What properties should be possessed by a
"good" procedure for approximating optimal detectors? How may the

finite sample efficiency of a suboptimal detector be characterized?

2. Outline of the Thesis

This thesis has been written as one approach in addressing these and
similar issues. The orientation of the work is not directed toward purely
theorétical ends, nor is it purely an application of known results. Rather,
it attempts to combine elements of both areas. The previous questions
are studied in the combined light of abstract and practical considera-
tions. Thus, the results which will be presented range from theorems and

procfs to numerical simulations of proposed systems.

Chapter 2

Chapter 2 introduces the detection problem which is common to all
chapters. Specifically, the Neyman-Pearson and locally optimal detectors
are discussed, along with a description of their particular performance

measures.

It is obvious that every density family, save for one, comprise non-

Gaussian densifies. These densities often characterize the noise in phy-



g

sical situations where classical assumptions leading to a Gaussian noise
model are violated, and are of considerable practical interest. An impli-
cit assumption in many cases is tha|t the non-Gaussian densities deviate
from the nominal Gaussian meodel in a particular way; most importantly,
they are heauy-tailed relative to the Gaussian density. An explicit char-
acterization for these demnsities is given in the chapter, and several useful
non-Gaussian univariate density models are. exhibited. The chapter con-
cludes with a discussion of the importance of recognizing the effects of
heavy-tailed noise and its impact on the detection problem as seen in

previous work.

The appendix also introduces some non-Gaussian physical noise data

which is used later in the thesis for simulation studies.

Chapter 3

The thrust of Chapter 3 is to consider the design of simple detector
structures. It is assumed that little is known about the non-Gaussian
noise environment, and that the goal is £o design detectors with very sim-
ple structures and adaptation algorithms. Two alternative approaches
are proposed: one is an "open loop" procedure where the observed noise
density tails are characterized, and this information is used to update
the detector structure. The other approach is a "closed loop” procedure
where a very simple detector nonlinearity, a three-sectioned piecewise
linear function, is proposed. An adaptive algorithm is then developed for

finding the optimum nonlinearity parameters.

The performance of the two alternative structures and adaptation

algorithms is examined under some known non-Gaussian noise density
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medels, as well as in a simulation using physical noise data to drive the

algorithm.

Chapter 4

Chapter 4 also proposes a detector structure for a non-Gaussian
noise environment, but assumes a different philosophy. There it is
obsérved that statioﬁary' noise models may be inappropriate when the
noise source contains bursts of impulsive noise; 1.e., the impulse produc-
ing event is short and well delineated in the noise observation sequence.
Recognizing this fact, a nonstationary model for the noise is proposed,
and a time varying detector structure is designed that capitalizes upon
the ability of a subsidiary detector to recognize the presence of impulsive
bursts. An algorithm' for the subsidiary noise burst detector is
developed using a nonparametric approach. The performance of the time
varying detector and of the noise burst detector is examined in detail,
and the physical noise data again is used to simulate the detection sys-

tem.

Chapter 5

Answered in Chapter 5 is a question hinted at earlier in Chapter 3:
what is the "best” way in which to approximate a imown locally optimal
detector structure? The term "best way" is interpreted as meaning the
procedure yielding an approximation having the greatest efficacy, and a
theorem is proven showing that the answer turns out to be any procedure
that minimizes mean square error relative to the density induced meas-

ure. Implications of this theorem are discussed and its application is



illustrated in two examples.

Chapter 6

Throughout the thesis, concern is placed on locally optimal detection
and the performance measure of efficacy. Chapter 6 changes course and
examines the finite sample size performance of detectors which approxi-
mate the Neyman-Pearson structure. While closely related to previous
work on performance bounding, this new work does not assume that the
detector test statistic is generated by a likelihood ratioc of the exact or
approximate hypothesis densities. Bounds on the error probabilities are
combined to form a single performance index, and several theorems
establish its properties. The ratio of two indices is designated as the rela-
tive bound efficiency, which is shown to have a useful interpretation. The
finite sample periormance of some well known detectors is examined

using relative bound efficiency.

Chapter 7

The results presented in the thesis are summarized in Chapter 7, and

some suggestions for further study are made.
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Signal Detection
and the Non-Gaussian
Noise Environment

Although diverse in purpose and form, radar, sonar, and data com-
munication systems have at their heart a common important problem:
detection of a signal in a noisy environment. This problem has received
considerable attention in both the engineering and statistical literature,

with viewpoints ranging from concrete details to abstract theory.

The purpose of this chapter is not to provide a thorough review of the
detection problem, or of the noise environment modeling problem.
Rather, this chapter is intended only to provide a common ground from
which some particular problems in detection theory may be viewed;
therefore mathematical rigor is suppressed for the sake of compactness.
Complete exposition of the theory is available from the cited references.

Section 1 provides a short introduction to the detection problem and the

o=
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theoretical foundations upon which the remainder of the thesis will rest.
Specifically, the Neyman-Pearson and locally optimal detector structures
are introduced with their associated performance measures. In Section
2, note is made of a particular type of noise environment which will be of
concern in this thesis, and some noise models are discussed. The notion
of a non-Gaussian density is developed to the degreé necessary to give it
a characterization. Finally, Section 3 discusses the impact of non-
Gaussian noise on the detection problem and summarizes some results
which are background and motivation to the approaches in this thesis.
The Appendix outlines the characteristics of éome physical noise data

which is used later in the thesis to drive various simulations.
.1. Detector Structures and Performance Measures

Neyman-Pearson Detector Structure

A binary hypothesis test may be used to model the problem of
detecting a known signal in the presence of noise. Consider the following
detection problem in discrete time over a signaling interval of length M.
Let 6s=6{s;,...,sy! be a known signal sequence with amplitude
parameter @ > 0, and let n = {n,, . . . ,ny} be an independent identically
distributed (iid) noise sequence independent of the signal. Section 2 will
provide justification for the iid restriction on the noise. The detector
observes X, a data sequence i:z.l, .. ., Ty}, and decides between:

Hy x=n1
H;: x=n+6s

Here, without loss of generality, we restrict ourselves to the special case
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of distinguishing between the two signals s,=0 and s;=s. In the frame-
work of Neyman-Pearson (NP) hypothesis testing [1-3], the observation x
and the multivariate noise density fy are used to calculate a likelihood
ratio Ayp. This test statistic and a fixed threshold Typ are compared to
arrive at a decision: A, is chosen when Ayp > Tnp, and Hy is chosen when
Ayp = Typ. More precisely,

™ fz—es) 3

R e e L (1)
0

M
Since the noise is iid, fy(n) = [] f (n;) where f is the univariate density
i=1

of the noise. For the sake of brevity, in the remainder of this thesis we
adopt the vonvention that f () is the univariate noise density unless
explicitly staled otherwise. Because the logarithm function is monotonic
a test equivalent to (2.1) is

H,

Avp =InAyp 2 typ =InTyp (.2)
Hy

where

¥ f(z;—6s;)

u
Ayp = _§19NP;1'(33-£) = iglln 7 =) (.3)

The function gyp; is memoryless, but time varying because the signal
varies with time. Consideration of the time varying signal case adds noth-
ing beyond unnecessary complication to the essence of this discussion.
Therefore, we will sacrifice completeness for clarity, restrict attention to

the constant signal s;=s for 1=1,...,HM, and replace the sequence
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{gnp.i} with a memoryless nonlinearity, gyp. Figure 2.1 presents a block

diagram of the NP detector structure generated by (2.2) and (2.3).

Neyman-Pearson Detector Performance

The performance of a Neyman-Pearson detector is usually measured
in terms of its false alarm rale o and its power of detection . These

quantities are defined as

a = Prob(say H,| Hq true)

B = Prob(say H, | H, true)

These probabilities are determined by the distribution of Ayp under H,

and A, respectively, and the value of the threshold ¢{yp. Thus,

a= [pu(N)dA (2.4)
txp

8= [pu(Ndx (2.5)
Inp

The Neyman-Pearson detector is optimal [1-3] in the sense that, for
any given false alarm rate ag, the NP test achieves the maximum proba-

bility of detection g in the set of all possible tests with a < ay,.

The performance measures a and § are not restricted to the charac-
terization of NP tests only. The performance of any threshold detection
scheme may be parameterized via (2.4) and (2.5). In principle, if the
noise density f is known, and a known nonlinearity g processes the

observations, then Ph, and py, may be computed via transformation of

the hypothesis densities in the case where x is a single observation and



_Jig-

gﬁpf‘}

Fig. 2.1. Block diagram of the Neyman-Pearson cptimal
detector structure for detection of a known constant signal
in additive iid noise.
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M =1. For multiple observations, M >1, and py, and py, may be com-

puted via #-fold convolutions of the transformed hypothesis densities, as
is well known. See, for example, references [3 pp. 215-219] and [4]. In
other instances, carrying out this procedure may be a difficult or intract-
able problem, especially when M is large. One must then resort to calcu-
lating a and g8 via Monte Carlo simulations [5,6], series expansions [3, pp.
219-226] and [7], numerical approximation methods [8,9,49], perfor-
mance bounding [2, pp. 118-133] and [10], or the Central Limit Theorem
[11 pp. 308-319] and [4].

The measures a and f are often inconvenient to compute, even
though they give a complete characterization of detector performance.
‘Small changes in the detéctor nonlinearity or noise density may change a
tractable computation into an intractable probleﬁ. Further, with the
exception of Central Limit Theorem based techniques, most methods give
little qualitative or quantitative insight into understanding how changes
in the threshold or sample size affect performance. All of the techniques
offer little illumination of performance sensitivity as a function of

changes in the nonlinearity shape.

Locally Optimal Detector Structure

In cases where the signal-to-noise ratio is very small, #~0, and the
test statistic may be calculated via the locally optimal (LO) detector
[12,18]. The test becomes

H,

¥ >

Ao = X 9roa(z) Z tro (2.6)
o 1=1 H
0



-19-

where

d mf(-'ri“esi), A CH N
A6 f(®m) om0  flm)

9r0:(T:) = (2.7)

Simply put, g10.; is the coefficient of @ in the Taylor series expansion of
gnp; about 6=0. Despite the fact that s may be time varying, the
transformation operating on z; is not a function of 1. Instead, (2.8) and
(2.7) imply that the output of a single memoryless nonlinearity g;o
should be correlated with the signal. Once again, to simplify the discus-
sion, we restrict the signal to be constant, rescale the test statistic by s,
and limit our efforts to consideration of g;p = —f'/ f. Ii gLo is substi-
tuted for gyp, then Figure 2.1 also represents a block diagram of the LO

detector structure generated by (2.8) and (2.7).

Locally Optimal Detector Performance

Rather than derive rigorously the performance measures of efficacy
and asymptotic relative efficiency for locally optimal detectors, we briefly
summarize some of the important points of these useful measures. A

thorough treatment of this subject is available in [3,12-14].

The Neyman-Pearson detector is optimal in the sense that for given
a, it maximizes § when the signal amplitude 6 is nonzero. The locally

optimal detector, on the other hand, is optimal in the sense that, for

ad

given a, it maximizes o

B(8) . Zero signal strength is obviously a
8=0

limiting worst case. A useful way of comparing two detectors in Lhis lim-
iting case is to compute their ARE, or asymptotic relative efficiency,

where,
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e M3(a,B8,06)
AREg o, = Im 2o (2.8)

and M(a,8,6) is interpreted as the number of data observations neces-
sary to provide a (a,8) performance level for signal level 6. As seen in
(2.8), asymptotic relative efficiency is the ratio of the number of samples
necessary in each of two alternative detectors to maintain the same pro-
babilities of false alarm and detection as the signal-to-noise ratio
approaches zero. Regularity conditions [13] ensure that as 6 » 0, both M,
and M, - e; thus, ARE is a small signal, large sample size measure of per-

formance.

A simple expression is available to compute ARE, and is defined as

_ 77f(91)

ARE = L=
g19z2 77](92)

(2.9)

where 7, (g) is the efficacy of detector g in noise density f. It may be
shown [3, p. 228; 13], for iid noise and a fixed detector nonlinearity g,
that
[ 2
JSo'@)f (=)dz
ns(9) = L2 (2.10)
S9%a)f (z)a

where g has zero mean under f. This definition of efficacy is subject to

the following regularity conditions in a neighborhood of 6 = 0:

is asymptotically normal with zero mean and unity

variance. Here, A, is the test statistic of a detector using
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memoryless nonlinearity g.

() 6 =kM~*, where k is a nonzero constant.
b e .| ,
(m)g_{g 36 EHI = En.g
The LO detector maximizes efficacy [13]; as a result AREg g0 =1 for

all detectors g satisfying the regularity conditions. Note that (2.10) is a
ratio of two expectations, and is therefore usually mo.re convenient to

compute than an M-fold convolution of a probability density.

A cx-'iticism of ARE is that it is a performance measure based upon a
limiting case. While ARE measures asymplotic performance, it may not
give a good indication of the relative merits of two detectors in a small
samplé, nonzero signal environment. Some recent work [15,16,50] has
concentréted on examining the convergence of relative efficiency to ARE.
Further, because efficacy is only a ratio of two expectations, it may be
argued that two detectors with identical efficacies need not have similar

small sample performance.

Despite these criticisms, ARE, efficacy, and the LO detector shall
receive the most attention in this thesis for several reasons. First,
efficacy is a convenient, accepted, and well studied measure of perfor-
mance. Second, small signal detection is an important problem, and the
zero (or infinitesimal) signal is the limiting bound. The NP and LO detec-
tors are asymptotically equivalent in the limiting case, even though LO
detection is not optimal for a nonzero signal [13,51]. Third, for very small
signals there is a close correspondence between the forms of the NP and

LO detectors, which suggests that by paying attention to the LO detection
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problem, it should be possible to gain insight into the issue of NP detec-
tor design. The relationship between the nonlinearities for the two types

of detectors is

d
)= —1 z 2.11
sgro(z) 36 ngyp( )9=0 (2.11)
and, from [17]
gnp(z) = !;gLo(x)d-T (2.12)

The latter equation implies that if € is small, and if gz, is approximately

constant over the range of integration, then gyp ™ 6sg;0.
2. The Non-Gaussian Noise Environment

General Assumptions

Before discussing some noise ﬁodels of interest later in the thesis, it
is nécessary to state some of the fundamental assumptions about the
noise environment and the models which will be used. First, as stated in
the previous section, we are interested in the discrete time environment.
Second, we assume that the noise samples are independent and identi-
cally distributed. This is a very strong assumption with extensive and
rigorous requirements on the noise behavior, but it allows simplification
of the analysis. For example, the difficult problem of modeling depen-
dent non-Gaussian noise is eradicated by the independence assumption.
Further, a noise with a nonstationary distribution implies that time vary-
ing detector structures are necessary, which, in general, may be quite

difficult to specify and -implement.
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What is of more interest than strict mathematical fulfillment of the
iid requirement is that the assumption be approzimately true for the
physical case of interest. Even though noise is usually correlated due to
the finite bandwidth of a channel, adjacent samples may be approxi-
mately independent, provided the sampling rate is low enough. The noise
environment is always nonstationary, as no real source has unchanging
statistics for the infinite past and the infinite future. Over finite inter-
vals, however, the statistics may appear stationary, or the noise statistics
may be changing slowly enough that they appear approximately station-

ary and may be tracked by an adaptive system.

To provide a starting point, then, it is not unreasonable to assume iid
noise. This'assumption is a di\}ergence from the reality of physical noise
environments, but for that price élarity and mathematical simplicity are
purchased. An implication of this assumption is that the noise environ-

ment is described aciequately by a univariate density.

There is an abundance of information on the measured statistics of
physical noise sources, a full report on which is beyond the intended
scope of this chapter. Instead, as the emphasis is on understanding the
problem of finding near-optimal detectors for non-Gaussian noise, the fol-
lowing subsections present some common noise models which will be
used in the following chapters. For convenience, the noise densities will

be assumed here to be zero mean and unit variance.

Gaussian Noise Model

A Gaussian noise background is the classical assumption in the

design and analysis of detection systems. Here, the univariate noise
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density is the well known expression

f(z)= #e"’z/z | (2.13)

which leads to the LO nonlinearity

gro(z) =z (R.14)
For convenience, (2.14) will be referred to as the linear detector, id.

The Gaussian assumption has attractive features in that it is
mathematically tractable and the optimal detector structure is a linear
processor. Strong justification for this noise model is available due to
Central Limit Theorem (CLT) arguments, for at least two reasons: first,
the noise source often may be considered as a shot noise process
comprising a very large number of small effects with additive cumulative
effect; e.g., thermal noise. Second, the finite bandwidth of many chan-
nels "averages’ together the noise process, tending to make the noise at
the channel output Gaussian. In the limit, as the channel bandwidth
approaches zero, it may be shown [18 Thm. 2.4] that the noise output
process of a narrowband channel converges in distribution to a Gaussian

process.

Rebuttal of the Gaussian Model

Despite these arguments, measurements of different noise environ-
ments have led to the conclusion that the true noise distribution often is
described better by a heavier tailed pdf; e.g. [19-22, 25-28,30,35,36,48].
Also, see the discussion and bibliographies of [17,23,32,33]. This type of

noise may be ascribed to a nominal Gaussian environment with a heavy
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tailed impulsive noise contaminant. Another consideration is that a real
noise comprises a finite sum of random events; in a shot process there
can only be a finite number of contributors, and any real channel has
nonzero bandwidth. The result is that CLT convergence to the Gaussian
pdf is not complete. Instead, the observed noise pdf is most nearly Gaus-
sian near the mean, with the tails converging to the Gaussian pdf only in

the limiting case.

m
For example [24 p. 103], if X, = Y. ¥, and the Y; are iid random
=1 h

=
variables with continuous distribution function, E¥ =0, EY?=1, and
EY?=0, then $(z; )~ Fx_(Zm) for |Zm | =VInm where $ is the Gaussian
distribution function. Convergence of the sum distribution to the Gaus-

sian is from the mean outwards, and the size of the Gaussian-like region

is proportional to vV Inm .

Contained in this discussion is a partially constructive, but loose,
characterization of non-Gaussian noise densities. Obviously, all families
of densities save for one are non-Gaussian. However, in this thesis only
particular types‘ of deviations from the nominal Gaussian family are of
concern. The term non-Gaussian noise density will refer to unimodal,
symmetric densities which have a Gaussian-like shape in a region cen-
tered about the mode. These densities also possess tails that are heavier
than the Gaussian, for they converge to zero asymptotically at a rate less
than an equal variance Gaussian density. This type of density is often

referred to as being heavy-tailed or long-tailed.
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Middleton’s Class A and B Density Models

Noise density models may be classified intoc one of two categories:
physically motivated models and empirical models. The first group of
models take into consideration physical aspects of the noise situation and
attempt to describe the density from this physical accounting. The
second group of models use convenient distributions which seem to agree

well with observed characteristics of the noise.

Middleton's Class A and Class B models fall into the category of physi-
cally motivated models. Without exposition of the details found in
[20,25-28], both models intend to characterize situations where the noise
Is nominally Gaussian with an additive impulsive noise component. The
Class A model assumes that these spike‘s are of lesser bandwidth than the
receiver, and as such, do not generate a transient response of significant
duration relative to the spike duration. The Class B model assumes the

reverse, and the spikes produce relatively long transients.

The Class B model comprises an infinite series of confluent hyper-
geometric functions, each of which is generally defined by an infinite
series [29 p. 504]. Because of its unwieldiness, we will not consider it

further.

The Class A Model comprises an infinite series of Gaussian density-

like terms, and may be written as

2 2
e‘AA”‘e z°/20p5,

fa@)= 3

m=0

= (2.15)

The parameter 4 is called the overlap index and is the product of the

duration of individual events in the impulsive component and the mean
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rate of the shot process generating the impulsive component events. The

other parameter is defined as

) o m/A+T"
Lid 1+

where I" is a measure of the ratio of the power in the impulsive com-
ponent compared to the power in the Gaussian background. Both param-
eters are directly related to physical measurements of the noise environ-

ment [30].

Figures 2.2 - 2.5 compare some representative unit variance Class A
densities and the Gaussian density. The Class A densities have Gaussian-
like behavior near =0, as evidenced by their parabolic shape on the log-
scaled plots. For large =z, hovx;ever, .they' have a much heavier tail

behavior than the Gaussian density.

The LO nonlinearity associated with f 4 may be written as

Ame ~z8/208,
2ot
0 O

Am e —32/20,2"

galz) ==z (2.186)

s ‘T’.Ms

m=0 m!

\

Figures 2.6 and 2.7 compare the LO nonlinearities for a Gaussian density
and the Class A densities of the previous figures. While g4 has nearly
linear behavior for small |z |, the effect of large observations is greatly

reduced with respect to a linear processor.

The Gaussian-Gaussian ¢-mixture Family

Another useful interesting class of noise distributions is the

Gaussian-Gaussian e-mixture family. It may be written as
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2 n
I"=.04
1.5} ~
=
falz) 1
I¥'=9
S5t
Gaussian
0
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Fig. 2.2. Representative Middleton Class A densities f4 with
A = .05 compared to Gaussian density.

logiof 4(z)

Fig. 2.3. Logarithm of Middleton Class A densities f, with
A = .05 compared to log of Gaussian density.
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Fig. 2.4. Representative Middleton Class A densities f, with
I" = .4 compared to Gaussian density.
Ofr (A =.25
2 b
logiof 4(z) ) : A=.05 _/
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Fig. 2.5. Logarithm of Middleton Class A densities f, with
I' = .4 compared to log of Gaussian density.
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——I"=4
g4 (x) 0 ——
-10F
-6 -4 -2 0 2 4
&5
Fig. 2.6. Locally optimal nonlinearity g, for Middleton Class
A densities with 4 =.05 compared to unity slope linear
detector ld.
|
A= 0] A=.05
4r Lid
- ‘—A =.20
QA(x) 0
-4}
-6 -4 -2 0 2 4

Fig. 2.7. Locally optimal nonlinearity g4 for Middleton Class

A delgsfues with I" =.4 compared to unity slope linear detec-
tor
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fe(z) = (1=e)fo(z)+ef y(z) (2.17)

where fq and f; are both zero mean Gaussian densities, with 0<e < 1 typ-

ically assuming a small value and o? > o§.

The LO nonlinearity associated with this density is

gg

(1-€)f o(z)+ef 1(z)

L2l roim) + 21 @)
1

g.(z) =z (2.18)

Figures. 2.8 - 2.11 compare some representative Gaussian-Gaussian e-
mixture densities and the Gaussian density. Figures 2.12 and 2.13 com-

pare the LO nonlinearities g, to a linear processor.

- The density f, is attractive in that it is a relatively simple empirical
model, and has been proposed for describing heav-y tailed non-Gaussian
noise [31,32]. Recently [27,33], it was shown that it also may be con-
sidered as a tractable simplification of Middleton's Class A Model arising
by truncating all terms of f4 for m > 1. The parameters of J ¢ have a sim-

ple relationship to the parameters of f4, given here as

&S T (2.19)
2
01 1
_= ] — .
- o (2.20)

Therefore, f, may be considered a quasi-physically based model. Figure
2.14 compares the LO nonlinearity for f, and the corresponding LO non-

linearity for the approximating density f P

In addition to a Gaussian-Gaussian mixture, others have considered
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Fig. 2.8. Representative Gaussian-Gaussian &-mixture densi-
ties f, with &€ = .05 compared to Gaussian density.
ol 0¥/ of =500
i 0f/ 0§ =50
™
logiof +(z) _ N
4 ot/ 0§=5
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Gaussian
-8 . .
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Fig. 2.9. Logarithm of Gaussian-Gaussian £-mixture densities
with € =.05 compared to log of Gaussian density.
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Fig. 2.10. Representatlve Gaussian-Gaussian &-mixture den-
sities with 0£/ 0§ = 100 compared to Gaussian density.

iogjof £(z) LA EzEDJ _[ N
£=.05

E= .Ulj /
Gaussian

Fig. 2.11. Logarlthm of Gaussian-Gaussian &£-mixture densi-
ties with 02/ 0§ = 100 compared to log of Gaussian density.
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-10
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Fig. 2.12. Locally optimal nonlinearity g, for Gaussian-
Gaussian £-mixture densities with € =.05 compared to unity
slope linear detector Ld.

Fig. 2.13. Locally optimal nonlinearity g, for Gaussian-
Gaussian £-mixture densities with 0%/ g§ = 100 compared to
unity slope linear detector ld.
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g(z) O —
-4 -
_B . . i '
-6 =4 -2 0 2 4
o i

Fig. 2.14. Locally optimal nonlinearity g4 for Middleton Class
A density with A=.1111 and ['=.0909 compared to locally
optimal nonhnearlty g . for Gaussian-Gaussian &-mixture den-
sity with 02/ ¢§ =100 and £ =.10. These values satisty Eqns.
(2.19) and (2.20).
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different contaminants of a nominal Gaussian background, including
Laplace contamination [23]. This mixture density also figures impor-
tantly in Huber’s theory of robustness [34], where the contaminant den-

sity is merely assumed to have log-convex shape.

Laplace Density

This density is also known as the double sided exponentiial density,

and may be written as
fulz) = FevAin (2.20)

The LO detector associated with the Laplace density is

g.(z) = sgn(z) | (2.22)

We will refer to (2.22) as the sién detector, sd The Laplace density is a
convenient model, for it has simple form. Measurements on ocean acous-
tic data suggest that the Laplace density may be a good model for certain
underwater environments [35,36]. While the demnsity clearly has tails
heavier than the Gaussian, it also has a non-Gaussian-like mode. Instead
of the smooth, infinitely differentiable mode of the Gaussian density, the
Laplace density has a cusp. Figure 2.15 compares the two densities for

equal variances.

Generalized Gaussian Density

This family of densities is a generalization of the Gaussian density

and may be written as

- ___7c —lyz |©
folz) = __2_21“(1/0) e=lrzl (2.23)
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Fig. 2.15. The Laplace density f L and Gaussian density
compared with zero means and unit variances.
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where the parameter v is defined as

7:

r@/e) %
li{l2c)

and I" is the gamma function, given by
I(z) = f‘r’"e TdT
()

The LO nonlinearity associated with f is

ge =c7° |z |7 sgn(z) (2.24)

This family of densities includes the Gaussian density for ¢ =2 and the
Léplace density for c =1. It has received attention in previous work, both
as a convenient heavy-tailed density for theoretical analyses [17,37-39],
as well és a reasonable model for observed noise densities. [21]. This fam-
illy has also been used to describe lighter tailed densities than the Gaus-
sian [36], with values of ¢ ®3. As ¢ -» =, the density tends toward a uni-

form distribution.

Figure 2.16 compares some members of the generalized Gaussian
density family on a linear scale, and in Fig. 2.17 they are compared on a
logarithmic scale. Some samples of the LO nonlinearity may be found in

Fig. 2.18.

Johnson S, Famnily — Transformed Gaussian Density

Another family of heavy tailed pdf's is the Johnson S, family. It has
been proposed |40] that certain heavy tailed non-Gaussian densities may
be thought of as arising from nonlinear distortions of the Gaussian den-

sity. For example, if Y is distributed as a zero mean, unit variance
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Fig. 2.16. Representative generalized Gaussian densities f,
for various values of parameter c.
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Fig. 2.17. Logarithm of generalized Gaussian densities Lo
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Fig. 2.18. Locally optimum nonlinearity g, for generalized
Gaussian densities.
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Gaussian random variable, and a new random variable is defined as
X =usinh(Y/4) (2.25)

then the density of X has unit variance, and belongs to the Johnson St

family, given by

—%

[ .
fa(z) = u\‘/% 1%“ ARl b (2.26)
with
(22 )
. [e(wz) — ] (2.27)

The parameter 6 centrols the tail heaviness. As d- o, the pdf tails
become progressively lighter, and approach Gaussian tails in the limit.
Like the generalized Gaussian family, a single parameter indexes the

range of tail behaviors.

The LO nonlinearity associated with f 5 may be written as

-1
+

e

2
3 2 sinh—1Z (2.28)
72 U

1+ 5
u2

2

z Z

x —__1+_
96( ) 2 2

Some representative members of the Johnson S, family are shown in
Fig. 2.19 on a linear scale, and in Fig. 2.20 on a logarithmic scale. The

corresponding LO nonlinearities g4 are given in Figure 2.21.

3. Detectors and the Non-Gaussian Noise Environment

Up to this point, basic detector structures have been reviewed, and
some simple noise density models have been presented. We now consider

some effects of a non-Gaussian noise environment upon the detection
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Fig. 2.19. Representative Johnson S,, densities f 5 compared
to the Gaussian demnsity.
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Fig. 2.20 Logarithm of Johnson S,, densities f ; compared to
log of Gaussian demnsity.
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Fig. 2.21. Locally optimum nonlinearity g for Johsnson S,
densities compared to unity slope linear detector ld.
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problem.

If two noise processes with equal variances are compared, one Gaus-
sian and the other non-Gaussian in the sense previously discussed,.it will
become apparent that the non-Gaussian noise has many more large
valued observations, or a larger degree of scatter. In the estimation or
regression contexts, one might say that the non-Gaussian noise process

observations contain a larger number of outliers.

Relation between Non-Gaussian Estimation and Detection

Work in robust estimation has long suggested that, in heavy tailed
noise, a robust estimator of the mean should reduce the influence of
very large data observatiops while leaving observations near the mean
relatively unchanged [41]. Any estimator uses a finite number of obser-
vations, and an excessive number of outliers unduly affects the estimate,
generally increasing its variance with respect to a robust estimator. Note
that "excessive”, as used here, is a qualitative term, with a meaning
dependent upon the particular estimator. Estimators based upon Gaus-
sian noise statistics typically have little protection against outliers, for
the simple reason that the effect of large observations is undiminished in
- any way; even the addition of a single observation with very large magni-
tude relative to the resi of the observations may significantly distort the

outcome.

The effect of an outlier on an estimator can be measured through the
calculation of a sensitivity curve. Andrews, et al. [31], present
numerous examples of the sensitivity curves for some common estima-

tors. In estimation of the mean, it turns oul that the optimal estimator
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b

32 Inf (z). This expression is

has a sensitivity curve given by gog(z)=—

identical to (2.7), the formula for g;o. Considering the duality between
estimation and detection, this is not a surprising result. Further, the
Cramer-Rao inequality [1 p. 127] evaluates the efficiency of an estimator

g via an expression identical to the efficacy of detector nonlinearity g.

Since the test statistic in a detector also uses only a finite number of
observations, the detector nonlinearity must reduce the impact of
outliers. NP and LO detector nonlinearities related te non-Gaussian
heavy tailed densities are typically composed of a linear region sur-
rounded by tails which compress, limit, or even blank large data observa-
tions. The previous examples of LO nomnlinearities for some common

heavy-tailed noise models exhibit this type of behavior.

Non-Gaussian Density Characterization

Given previously, and repeated here, is the loose definition of the
non-Gaussian noise densities which will be of interest in the following
chapters: the noise pdf is unimodal, symmetric about its mean placed at
the origin, and has nonzero support over the entire real line. Near the
mean, the density has a Gaussian-like shape, and the tails asymptotically
decrease to zero, but at a slower rate than the Gaussian; i.e.,

lim e*“/%°f (z)=w where o® is the noise variance. Note that both

EIR
Middleton's Class A density and the Gaussian-Gaussian e-mixture satisfy

this definition, despite being the sums of various Gaussian densities.

The following characteristics loosely specify the LO detector non-

linearities related to the desired types of non-Gaussian densities:



O

(a) continudus, with continuous low-order derivatives
(b) approximately linear at the origin

(c) odd symmetric about the origin

(d) strictly positive to the right of the origin

(e) monotone in’t.he tail regions

Note that, in light of (2.7), specification of the LO nomnlinearity behavior is

equivalent to specifying the form of the associated density.

Motivation for Nearly Optimal Detection

Implicit in both the NP and LO detection methods is a requirement
that the noise pdf must be known exactly. This knowledge is needed in
order to construct ng. Or g10. In general, the noise statistics are not
known with precision and the design of the LO or NP detector is not
straightforward. An additional consideration is that often the noise

environment is nonstationary, and an adaptive structure is necessary.

Alternative detection strategies are available, and among these are
(1) detectors which are I‘Obl:lSt with respect to deviations from a nominal
noise environment [34,37,42,43]; (2) nonparametric detectors which use
only very general infor;nation about the underlying noise distribution
[44,45]; and (3) fixed suboptimal detectors with acceptable performance
[27,46-48]. There are some problems with each of the three strategies:
first, it is not clear in the design of minimax robust detectors what den-
sity should be chosen as the nominal environment and what class of den-
sities should be chosen as unfavorable alternatives. Also, solution of the

problem may be quite difficult. Second, while nonparametric methods
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are usually simple and afford some degree of protection against heavy
tailed noises, they may not be as eﬁiciént as possible. Third, a fixed
suboptimal detector may be simple to implement, but may suffer severe
performance degradation should the noise environment change from

nominal conditions. !

With these ideas about the non-Gaussian noise environment in mind,
the following chapters explore methods related to nearly optimal, yet
simple, detector nonlinearities. The previous discussion should make
clear the necessity for simple methods which can adapt the detector

structure to unknown, and possibly changing, noise environments.
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Appendix 2.1

Throughout the thesis, reference will be made to some 4rctic under-
ice notse dalae. This data is the digitized output of a hydrophone
suspended beneath an ocean ice surface. Details of the data collection

and analysis of the data is provided by Dwyer [22].

The data, covering a time span of approximately 10 minutes, consists
of 8006 records of 1024 data points, sampled at a 10 kHz rate. As Dwyer
points out, the data taken as a whole appears to be nonstationary and
non-Gaussian: upon further examination, however, it appears thaf. only
certain of the noise records deviate significantly from a nominal Gaussian

distribution. The following argument is raised:

Define the estimated mean of data record k£ as

1024

1
k - —_— .

where 7y ; is the i** sample of record k. The r** central moment of data

record £ may be computed forr > 1 as

(k) = LS g g mpa ()T
pr(k) = —=— 3 [mei—ui(k)}]
1024 IEERSEEA=0

Using the second, third and fourth central moments, the skewness 8, and

the kurfosis §8; of a sample distribution may be computed as

M3
By =
R
_ M4
Bz = —%
M2

Then for each record k, the sample mean u,;, sample variance 02, sample
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skewness £,, and sample kurtosis 8, may be plotted as a function of k.
Examination of the plots, and of the kurtosis plot in particular, réveals
that a proportion of the sample records deviate from nominal values. The
nominal kurtosis is approximately 3, the exact value of kurtosis for the
Gaussian density. Occasionally, values f85>>3 are cbserved. It is these
records which are of interest in the thesis, for a high kurtcsis value for a
unimodal density indicates a heavy-tailed density. For example, the kur-
tosis of the Laplace density is 8. The sample cdf of the data indicates
that the density is unimodal; therefore the conclusion is that the records

with a high sample kurtosis have a heavy tailed non-Gaussian density.

The data from records with kurtosis exceeding 4 was collected for
use in simulation in the following chapters. Of the 6006 records, 58 met
the selection criterion. Figure A2.1 presents a list, indexed by BLOCK, of
their record numbers (RECORD), sample means (MEAN), variances (VARI-
ANCE), skewness (BETA1) and kurtosis (BETAR). Figs. A2.2 - A2.5 present
this data in graphical form. Data samples from a "typical” high kurtosis
block is presented in Fig. A2.6. Note that the deviation from a norminal
Gaussian density is apparently confined to two regions where the data has

a much greater spread than the majority of data in the block.
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ReCCED JEAN VARIANCE BETA1 BETA2
41 0.1680 0.2243 -0.6789 17.6774
48 0.1553 0.1235 0.0230 5.7118d
57 0.1629 0.17a2 -0.2864 5.,5454
68 0. 1698 0.1955 0.0075 4.2291
69 0.1566 0.2046 0. 2204 4, 2246

A19 C.16€4 0.2026 -0.1319 4.3539
708 0.1€57 0..1937 -0.2008 4.17%3

724 C.1649 0.2673 =0. 3840 4. 1981
726 0.1630 0.2570 -0.3672 8.1651
730 0.1536- 0. 3306 -0.8361 4.0926

732 0.1641 0.3958 ~0.6372 4,1245
791 0.1€84 0.1871 -0.3765 4.0627

867 0.1708 0.2621 -0,4333 4. 1756
12619 €.1578 0.2210 -0.6956 12.4215
1349 0.1622 0.1303 0.2202 4.0059
1362 0. 1549 0.0918 ~3.1228 28.1921
13€3 2.1694 0.0629 0. 1348 5. 0415
1317 C.1506 3.1097 -0.0032 9.3037
1340 0.1703 0.0980 0.0397 4.,2458
1384 0.1048 0.0968 -0.2784 4.7318
1388 0.1€92 0.0656 ~0.179 5.6106
1474 9.1731 0.0929 0. 2068 4.1320
1354 C.1€¢€u 0.0647 0.2371 4,022¢
1487 0. 1583 N.1700 0.5149 24,1614
1844 0.1643 0.109¢ 0.0005 5.8730
1578 0.1578 0.1591 -0.0360 5.6124
1888 0.1671 0.1056 Q9. 2052 7. 7451
191¢€ 0. 1695 0.0534 -0.1035 4.3778
1318 0.1730 0.0842 -0.0928 4.3102
1924 N.1644 0.0675 -0.2626 4. 1132
1938 N.15%u 0.08%2 -0.E538 7.1052
1943 0. 1582 0.0565 0.5376 5.5115
194¢ C.1658 0.0630 -0.6095 S. 1463
1622 €. 1500 0.0656 0.1034 5.1285
2041 0.1596 0.19484 -0, 8858 11.2526
2042 0.1717 0.2083 0.£156 7.4304
2066 0. 1709 0.1523 =1.5696 29.5222
2137 0.1671 0.1113 0.0973 S. 2482
2114 0.1636 0.0939 0.3051 4.1472
2132 0.1697 0.1412 0. 2270 5.0950
2177 0.1659 0.1000 -1.0546 13.4157
2220 0.1422 0.2u81 -2.7230 22.9806
2226 0.1672 0.1857 =0. 2045 7.2628
222¢ 0.1€03 0.1425 0.139 12.5198
2230 0. 1737 0.1489 0.2172 6.1617
2233 0.1648 0.1043 0.1070 4. 1805
223¢€ 0.1532 0.1363 =-1.3927 14.5487
2238 0.1672 0.1460 0. 3935 5.7368
2239 0.1651 0.1770 0.3023 11. 6600
2240 0.1€40 0.1321 -0.1224 6.1600
2242 0.1728 0. 1401 0.21%9 €.0886
224¢€ 0.1645 0.2141 1.0191 10,2487
2247 0.1672 0.1828 0.0207 11.8074
2248 0.1133 0.3774 =-2.9252 18. 5053
2249 0.189¢C 0.1384 0.1168 5.0615
2250 0. 1690 0.1677 0.19%9 4,6567
22¢%4 0.1642 0.1657 0. 1431 8. 1808
2261 0.1713 0.0788 -0.2939 4.0476

Fig. A2.1. Table of data record sample moments for records
with kurtosis exceeding 4. BLOCK is the index of the selected
records. RECORD indexes the 8006 data records of 1024 sam-

ples.
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Fig. A2.2. Sample mean w, for the data records with kurtosis
exceeding 4. Data records indexed by BLOCK.
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Fig. A2.6. Sample data from data record 2220. The sample
moments are u;=.1422; 0®=.2481; §,=-2.723; and
$2=22.98. RECORD=2220, and BLOCK=42.
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Adapiive Optimization of
Suboplimal Nonlinearities

This chapter investigates the feasibility of two simple alternatives to
locally optimal detector nonlinearities. Provided some simple measure-
ments on the noise densitsf are available, it is demonstrated that it is pos-
sible to construct nonlinearities which produce near-optimal levels of
performance in several specific noise environments. Section 1 presents
an overview of some practical issues which motivate the necessity for

near-optimal, yet uncomplicated, detector nonlinearities.

The basic philosophy forwarded is that nonlinearities designed for
practical detectors should have an uncomplicated structure that may be
easily adapted to changing noise situations. Two main issues are
addressed: the first is development of algorithms to determine the gross
shape (input-output relationship) of the nonlinearity. Of primary impor-
tance is the tail behavior of the nonlinearity, for it will determine the
degree to which impulsively contaminated observations can influence the

-57-
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detector test statistic. Sections 2 and 3 discuss two alternatives to
optimal nonlinearities. The second issue resolved is the matter of scaling
the input to the nonlinearity. This problem is essentially equivalent to
determining the noise variance and scaling the input. However, the usual
estimators of variance depending upon the squares of the ﬁoise observa-
tions are inefficient when the noise has a heavy tailed density. An alter-

native scaling method is developed near the ends of Sections 2 and 3.

Sections 4 and 5 provide a numerical comparison of the suboptimal
nonlinearities for cases where the true noise density is known. Also, the
algorithms are simulated using observed noise data. Section 8 provides a

review of the techniques and results presented in this chapter.

1. Introduction

In principle, the design of a Neyman-Pearson (NP) or locally optimal
(LO) detector nonlinearity for a signal in additive white noise is a simple
matter when the noise statistics are known exactly. There are, unfor-
tunately, some practical problems related to the implementation of a
nonlinearity. The most significant problem is simply that the true noise
statistics are usually unknown, or changing in time. While well known
techniques exist for obtaining the noise density [1-3], they often require a
fairly large observation period to achieve an acceptably smooth estimate.
For example, Wilson and Powell [4] present kernel function type density
estimates of several observed noises. The estimates are noisy and rough
looking when the logarithm of the densities are plotted. A LO nonlinearity
could be estimated from the derivative of the log of the densities, but

this would further emphasize the roughness. Additional smoothing of the
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density would be required if an acceptable nonlinearity is to be obtained,
and even then the nonlinearity may be still somewhat noisy or rough
looking (e.g. [5]).

Another problem is that, even when the density is known or can be
estimated smoothly, the related memoryless nonlinearity (ZNL) itself is
sometimes complicated enough to make implementation or adaptation
relatively difficult. For example, the Middleton Class A and Class B noise
models have been proposed as physically based canonical representations
for non-Gaussian noise, with parameters that may be calculated directly
_from physical considerations. Both models are infinite series [6,7]; the
Class A series comprises weighted Gaussian density terms, while the Class
B series comprises confluent hypergeometric' functions, which them-
selves are defined generally via an infinite series [8, p.504]. The detector
nonlinearities associated with these models may be calculated directly,
but at the expense of a high computational burden. Adaptation of the

nonlinearities incurs a similar computational cost.

One approach toward overcoming these difficulties with the optimal
nonlinearity is to use a suboptimal ZNL that has nearly optimal perfor-
mance, but has a structure that is simple to implement and easily adapt-
able. Some recent.examples of this approach include the work by Miller
and Thomas [9], Modestino [10], Ingram and Houle [11], Ziemer and Flu-
chel [12], and Vastola [18,19].

This chapter presents an approach to the design of a noise-adaptive
suboptimal detectors with these ideas in mind, focusing on the locally

optimal detection problem and noise environment of Chapter 2.
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2. Approximation via Noise Tail Matching

The previous chapter presented a discussion of a particular type of
non-Gaussian noise environment where the mode of the noise pdf
appeared as.Gaussian-Iike, but the density tails were much heavier than
the Gaussian. As noted, the LO nonlinearities associated with these types
of densities have a nearly linear processing characteristic for input
values near the pdf mode.  On the other hand, the tail behavior of the LO
nonlinearities ranges from linear for a noise pdf with Gaussian tails, to a
limiter for exponentially decreasing pdf tails, to a blanker for algebrai-
cally decreasing pdif tails. In general, the heavier-tailed the noise density
is relative to the Gaussian pdf, the more severely curtailed is the effect of

large data observations.

One objective of a noise adaptive nonlinearity, then, should be to
relate the ZNL tail behavior to the actually observed noise pdf tail
behavior. The main idea of the algorithm in this section is to establish a
relation between a measure of tail heaviness and a member of a con-
venient class of heavy tailed densities. Rather than performing a
parametric fitting within the density class, the algorithm chooses a den-
sity whose tail characteristics have the same tail heaviness measure as
the actual noise deﬁsity. The nonlinearity tails are thus determined by
the member of the density class chosen. The central region of the non-
linearity joins the two tails with some function which gives a desirable

near-linear processing.
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Tail Selection Procedure
This idea is clarified and illustrated by proposing the following: It has
been reported by Watt and Maxwell [21] that the generalized Gaussian

density

= C —|yz |©
fc(z)—ﬁ:zzlme 773 (3.1)

in certain instances can describe the pdi tails of physical noise sources.

For a noise variance of 0%, the parameter 7 is defined by

g = [ ['(3/¢c) ]
o’T(1/¢c)

The corresponding LO nonlinearities, shown earlier in Fig. 2.18, may be

written as

gro(z) = c7*|z|° ' segn(z) (3.2)

with ¢ conveniently parameterizing ZNL tail behavior. Therefore, we
model the observed noise pd! tails via the generalized Gaussian family. If
these density tails are used to generate a suboptimal LO nonlinearity, it

will have power law tails described by

Gim (z) =897 |z |*1sgn(z) for|z]| >z, (3.3)

It is necessary to find a value ¢ such that fAE is a good approximation to
the tail behavior of the true, but unknown, underlying noise density. A
simple way to do this is to equate the tail probability of f. with the

observed tail mass

Pr= 42 Inein) (3.4)
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Here, / is the indicator function and 7; are the noise observations
presumed available from a noise reference channel. The exponent & may

be estimated as the value giving

2[fe@)dz = Py (3.5)

where, for convenience, it is assumed that the noise has zero mean and
unity variance. The estimate € is defined implicitly by the integral in

(3.5); therefore it is desirable to derive a simpler explicit relationship
= h'T(pT) (3.6)

One obvious method for obtaining (3.8) is to first calculate Pr as a func-
tion of ¢, and then use interpolation to find the inverse relation hp. This

tabulated version of hy is shown in Fig. 3.1.

With o® fixed and ¢ small, the value of 7, a scale factor, becomes
large. ﬁ}ven though f_(z) approaches zero asymptotically at a much
slower rate than the Gaussian pdf as |z | becorneé large, the total proba-
bility mass in the tails is quite small. As a result, hp is multiple valued,
the density is extremely peaked, and the LO nonlinearity has a discon-
tinuity at the origin. For ¢ <1, the requirement that the suboptimal ZNL

be nearly linear at the origin clearly is not met by (3.2).

The objective in using the generalized Gaussian pdf is to relate the
tail heaviness of an observed noise to a parameter governing the shape of
the ZNL tail. Therefore we replace the anomalous behavior of the true

function h with a simple linear relation

ho(Pr) = k\Prtk, (38.7)
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Fig. 3.1. The exact and approximate relationships between
exponent ¢ and tail probability Py for unit variance general-
ized gaussian density for various thresholds 7. The exact
relations hr are the solid curved lines, and the linear
approximations Ay are the broken straight lines.

.05
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where k, and &, are chosen to approximate (3.6) for a particular value of
T. Several sample approximations are plotted as the broken lines on Fig.
3.1. The values for k; and k; are chosen so that when Py corresponds to
Gaussian or exponential noise tails, (3.7) gives € =2 and ¢ = 1, respec-
tively. Note that the linear relation allows the value of £ to be negative

for large tail probabilities.

The tail measurement threshold T must be chosen prior to estimat-

ing parameters &, and k2. One way to pick T is to choose a value solving

2
m%n E;fvart = myi'n GT e {Pp(1=Pp)3 (3.8)

for some prior density on the parameter c, where N is the number of
noise observations. For ¢ uniformly distributed on the interval [1,2], the
value T = 30 approximately minimizes (3.8). In practice, some better
knowledge of the distribution of ¢ should develop, and T may be adjusted

to minimize (3.8).

Central Region Selection

The LO nonlinearities of the generalized Gaussian family have desir-
able tail behavior, but for small values of & the behavior does not meet
the constraint of linearity near the origin. To eliminate this behavior, the
ZNL needs modification in the region near the origin. A way in which to
do this is to replace g4, (z), for z near zero, with a function that will
smoothly connect the two tails and have linear-like behavior near the ori-
gin. A suitable family of functions are polynomials p(z) with the following

characteristics:



-59-

plz) = 0(3$3+a2zz+alz +ag for 0=z <z,
p(0)=0

p(lxzol)sgn(+zg) = gom (£20)

P'(lxxgl) = gim (220)

P"([xzol)sgn(xzq) = §"m (£20)

Also, because p(z) is a third order polynomial, p'(z) ® a, for |z | very
near zero. This implies that p will be nearly linear in a neighborhood

about the origin, for there its slope is approximately independent of z.

Scaling

The choice of tail behavior via € and the point zy completely specify
P(z). The method for choosing € has already been specified, leaving zg as
the sole free parameter. A method equivalent to choosing the proper z,
is to choose an arbitrary z, and scale the input to the ZNL with a factor v.

It is reasonable to choose v to maximize the efficacy of the ZNL. For an

arbitrary nonlinearity g, efficacy as a function of v may be rewritten as

() = VE[g'(vz)]
T R, [gP(ve) B (va)]

(3.9)

In principle, (3.9) can be solved exactly. Unfortunately, a closed form
solution for v cannot be found in general, and the density f is generally
unknown. These problems may be circumvented by approximating the
expectations with integrations over the noise empirical distribution, and

solving (3.9) via stochastic approximation methods.

At this point, specification of the suboptimal nonlinearity g, is com-

plete, and may be written as

p(lvz |)sgn(vz) if lvz| =z

- ! 3.10
8lux |®-lsgn(vz) U |vz| >z (3.10)

gem(vz) =
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Figures 3.2 to 3.4 give some examples of the types of nonlinearities avail-

able using this approximation method.

3. Optimization via Efficacy Maximization
The previous section developed a method for choosing suboptimal
nonlinearities in what is primarily an "open-loop'” fashion: A relation was
established a priori between observed tail heaviness and tail heaviness of
known noise densities. The tails of the known densities were then used to
generate tails for the suboptimal ZNL. It is not obvious that this meth,od

is optimal in any sense, save for its sheer simplicity.

Another approach is to choose a class of nonlinearities of desirable
shape and convenient parameterization, and then find the member of the
class which maximizes performance. This type of approach may be con-
sidered to be a "closed-loop" technique, for measurements on the
observed noise density lead to selection of the optimal member of the

nonlinearity class; the performance measure provides "feedback’ to the

selection algorithm.

Again, under the detection situation and noise environment
described in Chapter 2, the following suboptimal ZNL is proposed,

comprising a central linear region and two linear tail regions:

_ |z | for [z|<a
ga(z)=(sgn z) blz|+a(1-b) for a< |z|<zp (3.11)

where

2(96‘—1?- for b <0

00 for 620

S (3.12)
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Fig. 3.3. Representative nonlinearities gy, for z,=3, various

v, and ¢ =.5.
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Fig. 3.4. Representative nonlinearities g, for zo=3, various
v,and c =1.
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The parameter a governs the breakpoint between the central and tail
regions, and & governs the slope of the tail region segments. A pair of

representative examples of gy (z) are given in Figs. 3.5 and 3.6.

Procedure for Estimating Tail Slope

Initially, we will assume a is fixed and turn attention to the problem
of estimating b. Some comments will be made in the following subsection

on the issue of finding the breakpoint.

The usual performance measure for a LO detector g is efficacy, dis-
cussed in Chapter 2 and recalled here as

[ 2

Jo'@)f (z)az

nr(9) = 5 (3.19)
J9%(@)f (z)az

where the underlying noise density is f and g has zero mean under f .
Figs. 3.5 and 3.8 highlight the fact that there are two distinct possi-
bilities for the shape of gy: In Fig. 3.5, the slope parameter b is greater
than zerc, and 924+ 1s nonzero over the entire tail region. In Fig. 3.8, the
parameter b is less than zero, and 92.5- 1s nonzero only over a finite

interval.

Using (3.13), the efficacy of 9215+ May be written as

[o o R
4{j+bff

2[z%f +2[(bz+a(1-8))%f
0 a

77(921;1,+) = (314)
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Fig. 3.5. A representative example of Gap+ for 2 =2 and

b=.25.
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Fig. 3.6. A representative example of gy, for a =2 and
b=-5.
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Here, U(Qa;w) is an explicit function of &, so it may be maximized by

finding &* such that %— = 0. In Appendix 3.1, an explicit solution
b=b*

(A3.6) for b* is found to be a rational function of the partial moments of
f, which depend implicitly on the choice of a. It was not possible to find
an expression which yields explicitly a value a* that maximizes (3.14) as
a function of a.

The explicit solution (A3.6) was derived to find the b+ that maximizes
77(921;:;*)- When the solution & * is non-negative, the tails of the nonlinear-
ity diverge from the z-axis, and g, has support over the entire real line.
Thus, the formulation for efficacy, given in (3.14) is correct, and the solu-
tion (A3 6) is correct.

What if (A3.6) yields a result 6*<0? The result &#* is still valid, but
the nonlinearity for which efficacy is maximized is not 9o~ Certain

integrals in (3.5) have range of integration (a.,'oo), whereas the correct

expression for the efficacy of g5 p- may be written as

2
a zr
| 4{; +bfr
n(ga1p-) = — - (3.15)
2 fz2f +2f(bz+a(1-6))2f
0 a

with zp given by (3.12). Note that if $*<0 and the value zy = is used,
then what is actually maximized is the efficacy of a nonlinearity gv with
virtual tails such as those shown in Fig. 3.7.

It is desirable to find an explicit solution for &* which takes into

account the fact that if 6*<0, then the solution should have been



-68-

gr (truncated
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Fig. 3.7. The nonlinearity gr is the incorrectly optimized
ga.b- It is a truncated version of gy, whose virtual tails are
artifacts of the optimization procedure.
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generated by maximizing (3.15) instead of maximizing (3.14). However,
the value zy depends on b*, and a closed-form expression for b* could
not be developed, as was done for (3.14) where the limits of integration do

not depend on b *.

It is possible to salvage the solution (A3.8). First, note that when
(A3.6) is applied without modification and gives 6* <0, the value |6*| will
actually have been underestimated, for this will reduce the mean square
error between the virtual tails of gv and the z-axis, at the expense of
increasing the mean square error between the tails dictated by the
incorrect b* and the tails of the properly optimized 9o - I the interval
[@,z7]. Overall, this has the effect of minimizing the performance degra-
. dation due to the virtual tails [15]. A further discussion of the mean

square error issue in ZNL approximation may be found in Chapter 5.

Two options are available: one is to apply (A3.6), obtain b*, and if it .
is less than zero, calculate z7 using (3.12), and merely truncate the non-
linearity at tz;. Appendix 3.2 demonstrates that truncating at +zp
yields better performance than if the virtual tails were ignored and
allowed to remain. The other option is to apply (A3.6) iteratively. For
startup, (A3.6) is applied directly, giving 6%. Eqn. (3.12) may be used to
give an initial value for zy, and the integrals in (A3.8) may be modified to
have range of integration (a,z7) instead of (a,~). The appropriately
modified (A3.8) gives b*,, and the process may continue in this fashion

until [6%,,,—b% | is less than a predetermined accuracy.
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Scaling
The issue of choosing a* may be approached by first considering Fig.
3.8. In this example, the value of 1(g2) reaches a maximum at a ~2.5,
with the performance being fairly insensitive to the exact value of a. In
fact, a 50% change from @ =2.5 yields less than a 9% change in efficacy.
This suggests that a simple method may be used to find a nearly optimal
estimate of a*: First, arbitrarily choose three different breakpoints g;

for 1 =1,2,3 and find the associated optimal tail slope &%. Then evaluate
7 = 1(g2) a;bey 0T 2=1,2,3 and fit a parabola through the three pairs of
points (a;,m;). Finally, choose & * as that point which maximizes the value

of the fitted parabola.

Obviously, the initial choice of the three breakpoints cannot be com-
pletely arbitrary. The algorithm will perform best when the true value of
a* is bracketed by the values a;, and 7n(g,) as a function of the break-
point is approximately quadratic for a;<a<ag The use of this scaling

procedure is demonstrated in Section 5.

4. Examples - Tail Matching Algorithm
We will now present examples of the use of 9im in approximating

some known optimal LO nonlinearities.

Generalized Gaussian Noise

The first comparison is between the approximate and exact versions
of LO nonlinearities for the generalized Gaussian family. The exponent ¢

is given by (3.7) after using the exact value c in (3.5) to obtain Py. Since
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a
Fig. 3.8. Performance of gy for various breakpoints a with

optimal tail slope b*. A Gaussian-Gaussian e-mixture density
for the noise is assumed with ¢ =.1 and 0%/ 08 = 750.
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this is an analytical example, and the true noise density is known, numer-
ical methods can be used to obtain v*, the value of v which maximizes
7(9¢m ). The performance of the suboptimal ZNL relative to the LO non-
linearity may be measured by asymptotic relative efficiency, given in

terms of efficacy as

S n(gtm)

ARE = L
gm0 n(gyo)

(3.18)

Figure 3.8 compares the performance of g;,,, the LO detector and a linear

detector (Id), in terms of ARE and AREgLo 1q- The suboptimal non-

9tm .gLo

linearity performs quite well for the range 1<c <2, but for ¢ <1, perfor-
mance deteriorates. This is easily explained, since for small ¢, the LO
nonlinearity output approaches +e for inputs near zero, while the

approximation methed requires g;,, to pass through the origin

Johnson S, Noise

Another family of heavy tailed densities introduced in the last
chapter is the Johnson S, family. The parameter & controls tail heavi-
ness, and the density has a Gaussian-like shape near the mode. For the
purpose of example, it is a convenient density family to be used in study-
ing the properties of the tail matching method. Since f, is given and
known, Py may be calculated from (3.5), and (3.7) gives €. Again, numeri-
cal methods can be used to find the v* that maximizes efficacy. Some
representative LO nonlinearities and suboptimal approximations are
given for various values of ¢ in Fig. 3.10, and Figure 3.11 presents the per-

formance comparison of g, 910, and id. For this family of densities, the
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Fig. 3.9. Performance of g, and g, relative to the linear

detector ld for various exponents c¢ in the generalized Gaus-
sian density.
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Fig. 3.10. The locally optimal nonlinearities gro and subop-
timal nonlinearities for two members of the Johnson S, fam-
ily. The nonlinearity outputs are scaled for comparison pur-
- poses. For the case 6=1, the parameters of g,,, are & =.752,
v*=3.26, and z,=3. For6=2,6=146,v*=188, and z,=3.
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Fig. 3.11. Performance of nonlinearities g, and g;o relative
to the linear detector ld, for noise densities parametefized
by 6 of the Johnson S, family. The optimal parameters ¢ and
v* are also given as a function of 4.



-73-

approximation method works quite well. Over the range .B< 6 < =, the

minimum of AREgtm,gm is .989, (occurring for 6 = .8). This means that

only a small performance penalty would be incurred if g,, were to
replace the LO detector. As a final comment, it should be observed that,
unlike the generalized Gaussian family, the Johnson S, family fulfills the
characteristics of a nearly Gaussian pdf given in Chapter 2, since f, is

sharply peaked, while f; has a Gaussian-like mode.

Gaussian-Gaussian c-mixture Noise

The performance of g, in a third family of heavy tailed densities was
also investigated. Here, the noise is assumed to be modeled by the e-

contaminated Gaussian-Gaussian mixture density, written as

fe(z) = (1=€)f olz) + ef 4(z) (3.17)

where fg represents the pdf of a zero mean Gaussian random variable,
and f; represents the pdf of another Gaussian random variable, with the
variance ratio 0¥/ of large. The parameter & controls the degree to which
Sf1 contaminates the nominal density f,, and is typically taken to be
small. Figure 3.12 shows a comparison between two LO nonlinearities and
their corresponding approximations. The approximate nonlinearities Gtm
do not appear as close to g0 in this example as for the Johnson S, family
for two reasons: first, the tails of g;, for the Gaussian-Gaussian e-mixture
Increase almost linearly, while g,,, is constrained to have power law tails.
Second, g10 has a total of four local extrema, while g;m is designed to
have a maximum of two. On the other hand, g, for f, has two local

extrema, and the tails asymptotically approach the z-axis.
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Fig. 3.12. The locally optimal nonlinearities g;o and subop-
timal nonlinearities g;,, for two members of the Gaussian-
Gaussian e-mixture family. (a) £=.05, 0%/08=5, ¢=154,
v¢=.957, z,=3. (b) £=.20, 0%/ 0§=20, €=-.196, v*=.BR1,
zo=3.
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The performance of g;,, was computed for a range of values of £ and
0f/ 0§ suggested by Vastola [18,19] as being representative of physical
noise situations. Figures 3.13 and 3.14 present the performance of the
tail matching method. The sets of curves indicate that the tail matching
algorithm generates nonlinearities which work quite well relative to the

optimal detector in Gaussian-Gaussian e-mixture noise.

The results show that it is often possible to achieve nearly optimal
performance using this simple approximation method. The salient
feature of the noise tail matching method is its ability to adjust tail
behavior in accordance with simple observations of the noise tail heavi-

ness.

Simulation

To see how well this system might work in practice, some actual phy-
sical noise was used to drive the system. The noise was collected under-
neath the Arctic ice pack, and details may be found in [22]. A summary
of the data selected for simulation purposes is given in Appendix 2.1 of
this thesis. The noise data is highly nonstationary; a background Gaus-
sian noise is abruptly interrupted with segments of a high variance noise

generated during cracking of the ice pack.

To get a more nearly stationary noise for driving the system, the data
in each block was adjusted to zero mean and randomly permuted,
thereby simulating the output of a stationary noise source. This adjust-
ment was necessary solely to improve the rate of convergence of the sto-

chastic approximation algorithm for obtaining v*. Figures 3.15 and 3.16
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Fig. 3.13. Performance of g4, relative to the linear detector
ld in Gaussian-Gaussian e- rmxture n01se for various values of
¢ and a range of variance ratios 02/ 0.
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Fig. 3.14. Performance of g, relative to g;, in Gaussian-
Gaussian e- rmxture n01se for various values of ¢ and range of

variance ratios 01/ Uo Curves are approximate due to
numerical roundoff errors.
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Fig. 3.15. Sample Arctic under-ice noise data, record 2220,
adjusted to zero mean. Vertical scale is in standard devia-
tions from the mean.
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Fig. 3.16. Sample Arctic under-ice noise data, record 2220,
adjusted to zero mean, and randomly permuted. Vertical
scale is in standard deviations from the mean.
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present a sample block of data, before and after random permutation,

respectively.

This noise was used as the input for the tail matching algorithm. A
threshold 7 =30 was chosen for estimating the tail probability of the
noise, where o is the standard deviation of noise data block. As more
noise data is observed, the cumulative tail probability estimate converges
to the true tail probability. The exponent € was estimated from this
curnulative estimate of Pr. The simulated sysiem had no knowledge of
the true density generating the noise observations; therefore, the Kiefer-
Wolfowitz stochastic approximation method was used to find the value of
v* which maximized 7n(gsy, ) for zo=3. The convergence rate towards v*
is fixed by the particulars of the stochastic approximation algorithm, and

no formal attempts were made to optimize its performance.

Figure 3.17 shows the running estimate of ¢ and v as a function of

sample number, and Fig. 3.18 shows the estimated value of AREg,m,ld for

each block of 1024 samples. Since the true distribution of the noise is
unknown, 7(g4,) was calculated by evaluating (3.9) using the empirical
distribution of the data block under consideration and the current esti-
mate of g;,. The estimate of ARE results when 7(gsy,) is multiplied by

the variance of the noise data block.

At the end of the simulation, it was assumed that the parameters of
g:m Were as near optimal as possible. These final values are given in Fig.
3.18. It was desired to compare the performance of g4, to the perfor-
mance of the linear detector. To do this, (3.9) was evaluated using the

final estimate of g;, and the empirical distribution of the 58 blocks of
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Fig. 3.17. Parameters ¢ and v* for each selected Arctic
under-ice noise block of 1024 samples.
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Fig. 3.18. The estimated performance of g, relative to the
linear detector for each selected Arctic under-ice noise data
block. The parameters of g, are those given in Fig. 3.17.
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Fig. 3.19. The final estimated nonlinearity g;,, at end of Arc-

tic under-ice noise data simulation. The final parameters are
€=1.13,v*=135, zo=3.
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1024 noise samples, and the result was multiplied by the variance of the

entire data set, yielding AREg‘m 1d = 1.39 as a performance estimate.

Because the true distribution is unknown, g;, cannot be found, and it
is not possible to calculate the performance of the LO detector. However,
it is possible to conclude that the Lail matching procedure was able to
adapt the suboptimal ZNL in a constructive way, for g;, shows improved

performance over the linear detector.
5. Examples - Efficacy Maximization Algorithm

Laplace Noise

Figure 3.20 provides a representative example of g5 when its param-
eters are estimated assuming a Laplace density for the noise. The LO
detector in this case is a sign detector, sd. Intuition might suggest that
the best approximation employing two linear regions and fixed nonzero
breakpoint is the amplifier-limiter al(z;a>0) = g5 (z;2>0,6=0)/a, but
this turns out not to be the case. The best performance is obtained when
gz has tails that return to meet the z-axis. Fig. 3.21 compares the per-
formance of gy, sd, and al in terms of their ARE relative to the linear
detector Ild. Note that gy has improved performance over both the
linear detector and the amplifier-limiter detector for any choice of a#0.
Also, when a-0, both al and gy /a2 approach the form of sd, and their
performances converge towards the optimal performance of sd.

For each particular value of a, the optimal tail slope & * was found by

iterative application of (A3.8) and (3.2). Convergence was typically rapid,

often requiring 3 iterations for a change of less than .001 in & *.
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Fig. 3.20. Comparison of the nonlinearity g, and the sign
detector sd for a =1 and b*=-.211. The output of gy is
scale for comparison with sd.
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Fig. 3.21. Performance of the nonlinearity g, the amplifier
limitier al, and the sign detector sd relative to the linear
detector ld for Laplace noise and various breakpoints a. Tail
slope b * is optimal for each choice of a.
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Gaussian-Gaussian ¢-mixture Noise

Here we consider the performance of g, in the presence of
Gaussian-Gaussian e-mixture noise. A representative example of g;po and
g2 is given in Fig. 3.22 for f, with parametlers chosen in the middle of
the range suggested by Vastola [18,19] as being reasonable for observed

cases of Middleton's Class A noise density.

At the end of Section 3 a technique was described for finding the
estimated optimal breakpoint @ *. It was employed for this example by
choosing the 3 points a; = .59 g; a; =g 5; and a3 =29 g, with g g mean-
ing the .9 quantile of the distribution. In practice, these quantities are
easily measured characteristics of a noise distribution. For the particu-
lar example of Gaussian-Gaussian e-mixture noise, it was found that a*
was typically within 5% of the true value of a*, and the efficacy of gy
using @ * was within 1% of the maximum possible efficacy of gg. Further,
the estimatle @ * was stable for different choices of {a;,as5a3}. Note that
for this example the true values of a* were available only through compu-

tationally burdensome numerical methods.

Given the estimated optimal breakpoint @ *, the slope b* was found
iteratively, as before. Convergence of b* to within a .001 change

occurred typically within 6 iterations. Figure 3.23 shows AREng 1q for

various combinations of ¢ and o%. Figure 3.24 compares the performance
of gz and g0, where it may be seen that the performance of gg 1s within

a few percent of the optimal, and at worst, within 4%. The relatively
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Fig. 3.22. Representative nonlinearities gy and g;p for
Gaussian-Gaussian e-mixture noise with e=.1, 0%/ 0§ =750,
e =25 and b*=-.524. The output of gy is scaled for com-
parison.
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Fig. 3.23. Performance of the nonlinearity g relative to the
linear detector {d in Gaussian-Gaussian e-mixture noise for
various values of ¢ and range of variance ratios 0%/ o8
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Fig. 3.24. Performance on the nonlinearity g relative to the
locally optimal nonlinearity g;o for Gaussian-Gaussian e-
mixture noise, for various values of ¢ and range of variance
ratios 0%/ 0.
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poorer performance occurs for the larger values of ¢ which assign more
probability mass to a region away from the origin. There the tails of the
LO nonlihearity diverge from the z-axis, while the approximate nonlinear-
ity g has truncated tails in this region. As a result, its performance

suffers slightly.

Simulation

As was done for the tail matching algorithm, the Arctic under-ice
noise data was used to examine the performance of the eflicacy maximiz-
ing procedure. The same 58 high-kurtosis data blocks used previously
and described in Appendix 2.1 were used to drive the algorithm, after
each data block was gdjusted to zero mean. Unlike the simulation in Sec-

tion 4, no further manipulation was neéessary to prepare the data.

Here the .9 quantile of the noise distribution was estimated for each

data block as

§,Q= q.ggq.l (318)

to minimize the effects of the high skew occasionally observed. The 3-
point parabolic fitting methed was used to estimate a*, with a;=.5G
g.g=ay and 2§ g=aj serving as the three arbitrary breakpoints. A minor
modification to the algorithm was made, requiring that 2,<a*<aj Any
2 * outside this range was replaced by a; or as, as appropriate. The
modification ensures that the algorithm does not produce highly inaccu-
rate values of 4% when the interval [a;,a3] does not bracket the true
value a*. The estimated values @+*, and ultimately, the performance of

gz were insensitive to using § g5 or § g5 instead of § g.
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Once @ * was found for each block, b* was found using the previously
discussed iterative procedure. Figure 3.25 shows the estimated values & *
and b* for each of the data blocks in the simulation. Note that both of
the parameters appear to have fairly steady nominal values. For each
data block, 77(g ;) was estimated by taking the current value of @ * and b *
and evaluating (3.14) or (3.15), as appropriate, with respect to the noise
data block empirical distribution. Multiplying this result by the

estimated variance of the data block yields an estimate of AREng‘ld,

shown in Fig. 3.26.

At the end of the simulation, the average values taken by a* and b *
were computed, and are given in Fig. 3.27 along with a depiction of gy
using the average values. Again, if these "final" parameter values are
used in (3.15) for the entire 58 blocks of 1024 noise samples, and the

result is multiplied by the overall noise variance, AREgm g =139 is

obtained as an estimate of performance. Surprisingly, this is exactly the

same result as the tail matching algorithm overall performance.

6. Conclusion

The conclusion to be drawn from this study is that it is possible to
implement adaptive detector nonlinearities using fairly simple tech-

niques.

Tail Matching

Of the two methods suggested, the first, utilizing an estimate of tail
behavior, is quite simple: let the tails of the suboptimal ZNL be the tails

of the locally optimal nonlinearity for a density with the same tail
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Fig. 3.25. Estimated parameters a* and &* of the nonlinear-

ity go for each of the selected Arctic under-ice noise data
blocks.. .
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Fig. 3.26. The estimated performance of gy relative to the
linear detector !d for each of the selected Arctic under-ice
noise data blocks. The parameters of gy are those given in
Fig. 3.25.
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Fig. 3.27. The nonlinearity gy for the average parameters
a*=.610 and *=-.372. These values are the average of the
values given in Fig. 3.25.
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probability mass as the observed noise distribution. Apparently Py con-
veys enough information about tail behavior of the noise density and
fairly good performance results using even a crude approximation to the
true ZNL tails. A more sophisticated estimate of € might improve the
performance g, ., &8s might a different choice altogether for the class of
density tails used for g;n. It would be interesting to discover how much

additional complexity any resulting performance gain could justify.

Other related approaches were recently explored by Modugno [17].
Some work done by Miller and Thomas [9] in approximation of LO non-
linearities suggests that even very simple approximants of the optimal
nonlinearity have the potential to achieve performance which is accept-

ably near the optimal.

Efficacy Maximization

The second method suggests maximizing the performance of a simple
generic nonlinearity. The approximate detector ZNL consists of a central
linear region of unity slope surrounded by linear tail regions, generally of
different slope. A closed form expression (A3.6) for the tail slope is given,
and a method is suggested for determining approximately the appropri-
ate breakpoint between central and tail regions in the ZNL. The tail slope
is either known exactly after a single application of (A3.6), or after a few
iterations using (A3.6).

Some examples show that the performance of the suboptimal ZNL
compares well with the LO detector performance, at least when the par-

tial moments of the noise density are known exactly. In the examples,
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the performance is very good, usually within a few percent of the optimal
performance. In practice, the performance of gy may not be quite so
good, since at best only estimates of the partial moments would be avail-
able. However, these partial moments are easily estimated, since the
highest order is second degree. Also, each integration typically spans a
region containing a nontrivial amount of probability mass; therefore it
should be fairly easy to converge quickly to low variance estimates of the
partial moments. The issue of sensitivity of 7(g 5 ) as a function of errors

in the partial moments has not been examined at this time.

The advantage of this method is that implementation of the proposed
nonlinearity is quite simple: all that is required is the ability to apply
_different linear gains (plus constant oﬁ'seté) to inputs occurring along
different regions of the z-axis. As a result, adaptation of gy can be

accompljshed with little overhead, once a* and b * are known.

The chief disadvantage of this method is the fact that negative values
of b* must be found iteratively. However, intermediate values of b * are
useful; the performance of g, is not maximal, but it is nearly so, and the

performance improves monotonically with each iteration.

Another complication is the fact that an explicit solution for a* is not
available. The parabolic fitting method mentioned may be used to esti-
mate a*, or other methods may be used to converge to the best value.
On the other hand, it appears that precise placing of the breakpoint is

not a critical matter.

The parabolic fitting procedure for finding the breakpoint is also

applicable to finding the appropriate scale factor to the input of a ZNL.
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Instead of performing a Kiefer-Woliowitz stochastic approximation to find
the optimal scale factor, the parabolic fitting method could be adapted
for solving the scaling problem. The quantities involved in the parabolic
fitting method are expectations of the noise observations transformed by
the square or first derivative of the ZNL. For heavy-tailed noises, the non-
linearity tails allow the very large noise observations to have much less
influence than if they were untransformed or linearly processed; there-
fore, the large observations contribute very little to the computed expec-
tation of the square and first derivative of the nonlinearity. Intuition sug-
gests that this inl;erently might be a more robust procedure than com-

puting variance through expectation of the squared noise observations.

Comparison of Algorithms

The performance of g4, and gs may be compared by computing

AREga Jim under identical noise situations. Because of the appeal of f,

as a reasonable model for certain observed noise densities, it will be used

as the standard for comparison. Figure 3.28 presents ARE , Where

Ga1.9tm

it may be seen that there is some advantage to the efficacy maximizing
algorithm giving g5,. This should not be surprising, since the algorithm
for g4 is an "open loop” procedure which does not optimize the .ZNL
shape. (Both algorithms optimize scale with respect to efficacy.)
Further, g5 may be regarded as having simpler shape than g, for it is
piecewise linear, while g4, has power law tails and a polynomial central

region.

As was noted at the end of the simulations, the estimated perfor-
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Fig. 3.28. Performance of the nonlinearity gg relative to the
nonlinearity g;, in Gaussian-Gaussian e-mixture noise for
various ¢ and range of variance ratios 0%/ of.
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Fig. 3.29. The estimated performance of the nonlinearities
gz (solid line) and g4, (broken line) relative to the linear
detector ld for each of the selected Arctic under-ice noise
data blocks. The parameters of the nonlinearities are the
values current for each noise block.
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mance improvement was 1.39 for either detector relative to a linear

detector. However, the value of AREg g Was obtained for a single fixed

ad
pair of parameters (&%,6*). If &* and b* are allowed to vary as the noise
statistics change from block to block, Fig. 3.29 illustrates that G2 may
have a slight advantage over g,,. The reason for this is thal, while the
adaptation algorithm for g4, forces the parameters to converge, the
algorithm for g, does not include any memory of the parameters from
the previous noise data block. Thus, the adaptation of g5 may be con-

sidered as more agile.

Both algorithms, to some extent, are ad hoc. The purpose in explor-
ing these methods was not to find a definitive algorithm for designing
nearly optimal, but simple, detector nonlinearities. Instead, the objec-
tive was to gain insight into this problem. The conclusion is that even
relatively unsophisticated ZNL design techniques have potential for highly
successful application, provided the design algorithm has available some

knowledge of the noise density tail shape.
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Appendix 3.1

We seek to maximize (3.14) with respect to b, and begin with some
notational preliminaries. The first step is to expand the denominator to

obtain

s =g
2{f+bff

n=— ~ - — (A3.1)
fxzf + bzf:z:zf + 2ab(1—-b)f:z:f + a,z(l—b)sz
0 a a a
For convenience, we rewrite (A3.1) as
2[7,+b1,]R
n= > 2 > (A3.2)
Taking the partial derivative of (A3.2) with respect to &, we obtain
an _ |4(I1+b]5) . b (alals—a®l5 —1,1,+2al,I5—a?],1,) (43.3)
ab d2 +(Ipl3+a?i§ —al Is+a?],],) o

with d representing the denominator of (A3.2). The notation is further

simplified by rewriting (A3.3) as

4(1,+515)
dz

an_ _

ab

2% (43.9)

A necessary condition for (A3.1) to have a maximum is that %—= O has a

solution for some b. A solution always exists, since the roots of (A3.4) are

the pair {(—1,/ I5),(~=D/ C)} = {by.b41.

A suflicient condition for a maximum to occur at b*eiby,b,} is

8%n : .
3% < 0. It is not necessary to evaluate the second derivative: all
b.
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that is required is to note that the numerator of the first derivative is

quadratic in b, and the denominator is positive for all &. Although %—is

2
not parabolic, %’é—has the same sign at &* as the slope of the quadratic

numerator evaluated at b*, one of its roots. Therefore, the root of (A3.3)

giving maximum efficacy will be located on the negative sloping branch of

the numerator parabola. Taking this into account, and the fact that, if

C > 0, the smaller root is on the negative sloping branch, and if C < 0, the

larger root is on the negative sloping branch, the solution of (A3.4) which

maximizes (A3.1) is

where

and

max {bg,b1] for C<0

be= min {bg,6,4 for C>0

boz —11/12

IpIs+a?l —al Is+a?l,],

' T alls—a?i 11,420l 15—a?l 1,

11=_0ff I,=[r 13={xzf

(A3.8)
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Appendix 3.2

Assume for the moment fhat. the truncated range of integration is
ignored and (A3.8) is used directly to maximize (3.14) resulting in &*<0.
The effect of ignoring the tail truncation at +zy is equivalent to allowing
the nonlinearity gv to have virtual tails like those illustrated in Fig. 3.7.
Additional nonzero tails in gv are an artifact of the improper range of
integration, and as a result, (A3.8) optimizes gv instead of g,. This
affects the final result b+, since the detector using gv would not perform
as well as one using gy, the truncated version. A simple argument
explains why: Due to the additional tail area, Eg'v < Eg'y, and Eg# = Eg5.

Combining these two facts, we find

[ ~%

o T Y
Sovr I_fmg‘?f <

. . 1
_j;gzzf _fmgé%f (A3.7)

For fixed and equal false alarm rates, gv will have lower power of detec-
tion than gy asymptotically as the number of samples grows large [14, p.

228]. A weak sufficient condition for the inequality (A3.7) to hold under

squaring is
ba—{f/ff (A3.8)

This lower bound on & is b, from Appendix I. Since b*€}bgb,} and
by=bg, the condition (A3.8) is satisfied for C<0 and 7n(gr)=n(gv). For
C>0 it should be possible to prove the observation that by<b;, making

the squared inequality true for this case also.

A rigorous proof of the inequality (A3.8) under squaring may be found
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by considering the effect of the virtual tails in the denominator terms of

(A3.7) in addition to their effect in the numerator terms only, as was done

here.
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Signal Detection
in Bursts of Impulsive Noise

The previous chapter was concerned with the development of a fixed
detector nonlinearity which could adapt to the noise statistics of the par-
ticular environment. There it was assumed that, over short periods of
time, the statistics were nearly stationary. Another approach to the
detection problem is given in this chapter, where it is assumed that the

noise statistics can change abruptly.

The fundamental idea explored is that, if the abrupt changes in the
noise can be recognized, a detector may use this knowledge to achieve
improved performance with respect to a detector whose structure is
based upon an assumption of nearly stationary noise statistics. Section 1
provides the background and motivation of the problem. Section 2
develops a model for noise with abruptly changing statistics; specifically,

the case of a Gaussian background noise interrupted by bursts of an

-101-
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impulsive contaminant noise is considered. A detector structure is pro-
posed, and its performance is analyzed. Section 3 examines the problem
of distinguishing between impulsive bursts and the background noise.
The proposed detector and impulsive burst recognition algorithm are
simulated in Section 4, and a few concluding comments are given in Sec-

tion 5.

1. Introduction

Considerable attention has been paid to the problem of recognizing
sudden changes in the stochastic environment of a system. Basseville [1]
and Willsky [2] summarize some of the techniques which have been
‘developed. One approach in treating this problem involves the use of
characterizations that allow for ébrupt changes in the noise statistics. In
some simple cases, the noise model consists of two distinct density func-
tions, each describing a unique mode of noise generation. During nono-
verlapping time intervals, one of the pair is considered to be the particu-

lar valid description of the noise density.

Fig. 4.1 illustrates a conceptual representation of this situation. Only
the sequence {n;} may be observed. The sequence {e;} chooses between
Tg; and ny,; on a sample-by-sample basis. While {e;} cannot be observed
directly, it may be possible to construct an estimate of it by observing
the behavior of {n;}. A usual assumption is that-e; does not switch "too
rapidly”; loosely speaking, after switching into a new state, e; tends to
stay there for a while It is this property that allows an observer to dis-
tinguish between the two noise modes. This assumption is clarified

further in Section 3.
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Fig. 4.1. A representation of the dual mode noise generation
Inechanism.
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For a physical example of a noise with abruptly changing statistics,
consider the case of the noise environment under the Arctic ice pack [3]:
For most of the time, the noise appears to be Gaussian. Occasionally,
though, ice cracking occurs, and a short burst of a relatively high vari-
ance noise is observed. After the cracking event is complete, the noise
returns to a nominal low variance Gaussian mode. Fig. 4.2 reveals the
distinctive difference in the behaviors of the two noise modes. This type
of noise may be described as an impulsively contaminated Gaussian

noise.

Various statistical models have been proposed for describing a noise
environment that is nominally Gaussian with an additive impulsive noise
coinponent. As was discussed in Chapter 2, these models often take the
form of univariate pdf's that are heavy-tailed relative to the Gaussian pdf
[e.g., 10,11,16,17]. Implicit with the use of a univariate noise model, how-
ever, is the assumption that the noise statistics are stationary at least
over the interval of interest. The Arctic under-ice noise is a counterex-
ample to this assumption, since over the short term the noise statistics
appear to be nonstationary. The impulsive noise occurs in bursts, and a
nonstationary model for the noise seems more appropriate than some

fixed model.

It may be possible to find a multivariate noise distribution which ade-
quately describes a background Gaussian noise with bursts of an impul-
sive contaminant. Unfortunately, finding multivariate non-Gaussian noise
models is in general a complicated problem, even in fairly straightfor-

ward situations. See, for example, [12-15]. Furthermore, complicated
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Fig. 4.2. Time domain plot of sample Arctic under-ice noise

data record 2220. Vertical scale is in standard deviations
from the mean.
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multivariate noise distributions may lead to unacceptably complicated

optimal detector structures.

When a heavy tailed noise has a burst-like structure as in Fig. 4.2, it
is reasonable to develop a detector that recognizes the dual-mode nature
of the noise and adapts rapidly to the particular operative mode. The
purpose of this chapter is to illustrate the potential advantage of such a

switched burst (SB) detector.

2. Switched Burst Detector

We shall restrict attention to the discrete time locally optimal (LO)
detection of a known constant signal in a Gaussian background noise con-
taminated by bursts of impulsive noise. All the noise samples are
assumed independent, but not necessarily identically distributed. In
more precise form, the problem is to observe x=z,, 1=1,2,..., M and
decide between

Hop:x=n

Hy:x=n+6s
where n=n;, 1=1,2, ..., and s is a known constant signal s of length
n and nonzero amplitude parameter 8. As is well known [5], the LO
detector test statistic in the case of white noise is any monotone function

of

_ &3, filzn—6s)]
= Lag " fi(z) oo

where f; is the univariate density of n;. The term being summed is a

_Ji'z)
f‘b(xl)

memoryless nonlinearity g; (z;) =
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Stationary Impulsive Model

One common empirical model of impulsively contaminated Gaussian
noise is the Gaussian-Gaussian e-mixture density, which may be written

as
S @) = (1-e)f oz )+ef 1(2) (4.1)

Here' fo represents a background low variance Gaussian noise, and 1
represents a high variance (impulsive) Gaussian component. Any particu-
lar observation z is generated by the impulsive component with probabil-
ity e. Vastola [4] recently suggested that (4.1) is also a useful
si}npliﬁcation of Middleton’s Class A model [10,11] for impulsive noise

environments.

Using- (4.1) as the univariate density of the noise, and assuming that
the noise samples are identically distributed, the LO detector nonlinear-

ity is fixed for all samples as

£1—EL.)’O(“—')‘*"""J'1 (z)

9:8) =2 |~y e @) e
For convenience, the overall noise variance is assumed to be unity.
Switched Burst Nonstationary Model
Consider the nonstationary noise density
Sso(ziie;) = (1—ey)folzi) e f1(z;) (4.3)
fori=1,2,..... Here, e; takes on the value O or 1, and fy and f, are two

arbitrary densities, which are not necessarily Gaussian. When e; is zero,
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the noise is in the background mode, and the observed noise has density
Jo. When e; is unity, the noise is in the impulsive mode and the observed
noise density becomes f,. The sequence {e;} is defined to have the pro-
perty

. 1 &
e = lim = de; (4.4)

LORGS i=1

The implication of (4.4) is that, over a long observation period, & propor-
tion of the samples come from the impulsive noise mode, and (1—¢) pro-
portion of the samples come from the background mode. Noise samples
described by fss may be thought of as being generated by the mechan-
ism of Fig. 4.1. In many cases of interest, the background mode is dom-
inant, and therefore, ¢ is often estimated or assumed to be small [4,8,17).
Note that unlike f ¢ the density fss is nonstationary. However, the noise
in each individual mode may be considered stationary, with the sequence

fe;$ conlrolling which mode is observed.

For the purpose of comparison with the Gaussian-Gaussian e-mixture
density, fo and f, shall be the same densities as those composing f,.
One rationale for picking fo and f, to be Gaussian is that they are the
two leading and most significant terms in Middleton’s Class A demnsity
model [4,24]. Equivalently, this assumption implies that the impulsive
contaminant is itself a Gaussian noise source. The case of f, and S 1 both

Gaussian shall be designated as Gaussian-Gaussian switched burst noise.
The observations z; will continue to be assumed independent for any
arbitrary switching sequence {e;§. The noise density on a sample by sam-

ple basis is either fq or f,, which requires that the nonlinearity used at a
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particular sample time is gq or g,, respectively. Ideally, go and g, are

the locally optimal nonlinearities associated with the two densities. The

test statistic becomes

T, = gss(z;ie;) (4.5)

1=1
where

go for e;=0

gs8 =) g, for e;=1 (4.6)

In practice, fe;{ would not be known; instead, some additional structure
is required to generate a sequence {p,;} as an estimate of {e;}. This prob-

lem receives attention in Section 3.

Ideal Detector Performance

In this subsection, expressions are given for the performance of the
switched burst detector with the assumption that the switching sequence
may be reconstructed without error. Performance will be analyzed for
arbitrary densities fo and f, with arbitrary nonlinearities go and g;.
Specific results for Gaussian-Gaussian switched burst noise with linear
detectors will also be developed. The next subsection explores detector

performance without this ideal knowledge.

A definition for the efficacy of an arbitrary stationary detector g with

zero mean under the noise f given in [5,6], and discussed in Chapter 2 is
nr(g) = =L (4.7)

The case of interest is nonstationary, as the nonlinearities composing gss
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switch in accordance with the switching of the underlying noise densities.
Appendix 6.1 demonstrates that, for the switching detector in the pres-

ence switched burst noise, (4.7) may be rewritten as

2
[(I—E)Efogo’ + eEflg'l]
(1-2)E; 9§ + eE; g ¥

nss(gss) = (4.8)

The formulation (4.8) is general, and does not depend on the fact that f,
and f, were previously defined to be Gaussian densities. For the particu-
lar case of the Gaussian densities used in (4.1) and (4.3), the LO detector
is linear with slope 05 for f, and with slope 052 for f,. Applying this

fact to (4.8), the expression for mse reduces to

1-¢ £
sp = |—m—+ — (4.9
K [ of of )

Note that (4.8) may also be used to evaluate the periormance of g, 1n
the presence of fss. In this case, the detector nonlinearity is the same
whether the background or impulsive noise is observed; therefore we can
letgo=g,=g, in (4.8).

A convenient measure for comparing the performance of two LO

|
detectors d, and d is asymptotic relative efficiency, defined in Chapter 2

as
AREd].dz = ndl/ T)dz (4 10)

The two nonlinearities g ¢ and gss may be compared by computing their
efficacies and evaluating (4.10).

Fig. 4.3 presents a plof of AREgss for combinations of ¢ and o?,

-gE
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Fig. 43, Performance comparison of fixed nonlinearity g,
and switched nonlinearity gss in Gaussian-Gaussian switched
burst noise for various values of ¢ and range of 02/ 08.
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from which it is clear that there is an advantage to the switched detector
method over the fixed detector. An intuitive explanation for this is that
in switched burst noise, the noise is always Gaussian (though with nonsta-
tionary variance), and the LO detector is always linear (with nonstation-
ary slope). Thus, the switched detector maximizes efficacy for it is

always locally optimal at any given sample time. On the other hand, 9

has two nearly linear regions, but it is not the locally optimal detector for

Gaussian noise. If the stationary density f ¢ is thought of as a time aver-
aged version of fsp, then in some sense the nonlinearity g s may be inter-

preted as an optimal stationary approximation of gss. The three non-

linearities go, 9,, and g, are plotted in Fig. 4.4.

Another point not made obvious by Fig. 4.3 is that the switched
detector is capable of large performance improvements over a fixed

linear detector, id. A plot of ARE q s presented in Fig. 4.5. For very

gss,l

large values of 0%/ 0§, the switched detector has a processing gain rela-

tive to Id of approximately £0?/ o3.

Non-deal Detector Performance

The previous subsection discussed the performance of the switched
detector under the ideal assumption of perfect knowledge of {e;}, and
that go and g, were LO for f and f,, respectively. In any practical situa-
tion, these assumptions would almost certainly be violated. As a result,
we now direct attention towards the performance of gss when only an
estimate {p;} of {e;} is available. Also, the effects of incorrectly estimat-

ing the variance ratio in the Gaussian-Gaussian switched burst noise is
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Fig. 4.4. The nonlinearity g, compared to the two linear
detectors gy and g,. The slopes of go and g, are og* and 0%,
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Fig. 4.5. Comparison of the switched detector gsp and t.he
linear detector Id in Gaussian-Gaussian switched burst noise
for various values of ¢ and range of 02/ o§.
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assessed.

Appendix 6.1 gives a detailed development of 7ss assuming fe;{ is
known. Appendix 6.2 notes the changes in the development arising when

the estimated sequence {p;} is used, and obtains the result

“ 2
{(1—8)Efo{1‘P1|0)90'+P1|09 1'] + CEJIP)OUQO""(I_.D!W)Q 1'”

Nsp = : (4.11)
(1—e)Ef°[(1—puo)g§+puog;°~] + eEfILnougc?+(1-pou)912]

where p1jo is the probability of using nonlinearity g, when the true noise
density is fo, and pop is the probability of using nonlinearity g, when the
true noise density is f,. When both error probabilities are identically
zero, then (4.11) reduces to the special case (4.8) of operation without

switching error.

Paralleling the discussion of the previous subsection, we shall con-
tinue to use the Gaussian-Gaussian switched burst model. Then f, and
S 1 are Gaussian densities, and gq and g, again are linear detectors with
slopes 0% and o7%, respectively. The situation may be generalized
slightly by assuming that g, has slope 57 not necessarily equal to 62. No
additional generality in the efficacy calculation results by allowing the

2

slope of gg to vary from og®, as only the ratio of slopes affects perfor-

mance. Under these assumptions, (4.9) generalizes to

[ 1-py 1- 2
{—s |0 + Pi)o o5 Poi1 + P01
eI
Nse = (4.12)
2 2 - 2
(1—g)| LoRuo_y Pu00G | | ponof (1 ﬁiou)m
o§ ot o o}

For the purposes of comparison, 5B, will denote the the switched burst
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detector with error, and SB; will denote the ideal error-free switched
burst detector. The noise environment will be the Gaussian-Gaussian
switched burst environment, with £=0.1 chosen as a value giving

representative numerical results.

To begin, the effect of the errors po: and pijo will be examined. Fig.
4.6 presents a plot of AREssa,ss,. for a range of values of po1, with p1jo fixed

at zero, and 812= o?. Here, the effect of incorrectly choosing to use non-

linearity go during the impulsive mode is isolated. Two conclusions are
obvious: first, performance deteriorates monotonically with increasing
error probability po;. Second, the effect of not recognizing an impulsive
noise observation is much worse as the variance ratio increases. How-_
ever, it is reasonable to assume that as the variance ratio increases, it is
easier for an algorithm to recognize noise bursts, and therefore po; will

be small.

Figure 4.7 demonstrates the effects of deciding incorrectly that a
noise burst is present. Here, pio is allowed to vary while po:=0, and
'df= o2, Clearly, making this type of error is far less damaging to perfor-

mance than deciding incorrectly that the noise is in background mode.

The combined effects of the two errors may be seen in Fig. 4.8. Here,
poj1=0.02, and pi0 varies. The results are consistent with the results of
Figs. 4.6 and 4.7: the performance deterioration is due mainly to popy, with
a pio providing a lesser deterioration. The conclusion which may be
drawn from these three figures is that correctly recognizing the presernce
of an impulsive burst is of critical importance to the success of the

switched burst detector. Note that this conclusion gives support to the
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Fig. 4.6 Performance of switched detector with errors S5,
relative to ideal switched detector SB; for various probabili-
ties po;; of incorrectly classifying an impulsive noise sample
as background noise.
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Fig. 4.7. Performance of switched detector with errors SB,
relative to ideal switched detector SB; for various probabili-

ties p1jo of incorrectly classifying a background noise sample
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Fig. 4.8. Performance of switched detector with errors SB,
relative to ideal switched detector 58; for various probabili-
ties pos of incorrectly classifying a background noise sample
as impulsive with fixed probability po;y=.02 of classifying an
impulsive noise sample as background noise.
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intuitive notion that even a few impulsive noise samples can seriously dis-

turb detector performance.

The effect of incorrectly choosing the slope of g; will now be exam-
ined. Here, po; =p1|o#0, and &%/ o? is allowed to vary. Fig. 4.9 gives

ARESBG,S&; for small values of the variance ratio, and Fig. 4.10 presents tI{e

case of large variance fatios. As illustrated, 5'12/ 0¥ may deviate
significantly from unity, with only moderate effects on performance,
especially for instances where o> 0? Note that, when the ratio
approaches infinity, gss essentially "turns off’" during impulsive bursts.
Further, as 0%/ 0§ grows large, the effect of incorrect 3 diminishes.
Surprisingly, estimaling ?7‘12 inaccurately does not critically affect perfor-
mance. An implication of‘Fig.' 4.9 and 4.10 is that, when &7 must be
estimated from the noise data, good asymptotic detector performance

may be maintained simply by biasing the estimate towards large values.

d. Discrimination between Noise Modes

In this section, an algorithm will be developed to regenerate the
switching sequence {e;}. It was previously assumed that the sequence
{e; did not switch "too rapidly”. The assumption may be interpreted
here as meaning that the probability of a very short run of ones in {e;} is

negligible.

Parametric Modeling

There are a number of ways to model the statistics of sequence {e;}.
Gilbert [19] proposes a Markov chain taking on one of the two state values

{Background, Impulsive {, corresponding to the proposed states zero and
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Fig. 4.9. Performance of swilched detector with errors S5,
relative to ideal switched detector SB; for various errors
7/0%<1 of impulsive variance estimate.
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Fig. 4.10. Performance of switched detector with errors S5,
relative to ideal switched detector SB; for various errors
%/0%>1 of impulsive variance estimate.
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one, respectively. This model was used with success by Ehrman [20] in
simulating an impulsively contaminated Gaussian channel. During a run
of a particular state in {e;}, each observation e; may be considered as the
outcome of a Bernoulli trial, with probability of success equal to one of
the two state transition probabilities p,.q o'r Po-1- As is well known [21],
under this condition it follows that the run length, or residence time, of
each state has a geometric probability density. The geometric density
itself is a particular case of the negative binomial density. If the transi-
tion probabilities p1.0 and pg.; are different, the residence time density

for each state has a different negative binomial density.

Another natural model for the run length statistics of {e;] is the Pois-
son density, where the rate parameter of the density is the mean state
residence time. The rate parameters of the two states need not be ident-
ical. 1f the rate parameter of a Poisson deunsity is not known exactly, and
instead is distributed as a gamma density, then the compound density is
the negative binomial density [21, pp. 122-3]; if the rate parameter is
exponentially distributed (a special case of the gamma density), then the
compound density is the geometric density. As a result, the negative
binomial density is sometimes referred to as a gamma-mixture Poisson

density.

For equal means, the variance of the geometric density is greater
than the variance of the Poisson. This is to be expected, as use of the
Poisson density model implies perfect knowledge of the state mean run
length, while the geometric model implies that only a statistical descrip-

tion of the state mean run length is available.
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Using parametric statistical models for {e;}, tests may be devised
which observe a noise sequence {n;}, and generate {p;{, an estimate of
the switching sequence. Various approaches include sample-by-sample
tests, pattern recognition approaches, and maximum likelihood sequence
reconstruction. With an accurate model, these approaches may quite
accurately reconstruct f{e;}. The difficulty, however, is that fairly
detailed information about the statistics of {e;} may be needed, and often

this information may be unavailable.

Nonparametric Approach

The advantage to a nonparametric 'approach is that detailed statisti-
cal information is not necessary to construct a test, and that non-
parametric tests are usually fairly robust: they work reasonably well over
a broad range of situations. Furthermore, they often have simple struc-
tures. On the other hand, they are generally less efficient than optimal
decision structures; i.e, given the same amount of data, there is a higher

probability of error.

The following two-step algorithm is proposed to generate {p;{, a

reconstruction of {e;}:

() On a sample-by-sample basis, decide between

!
(@]

n; ~fo sayp; (4.13)

il
b=

n;~f, sayp;

(i1) Filter the sequence {¥;} to obtain {p;}. Here, filter

means to smooth in a manner which tends to reduce the
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number of incorrect state transitions.

If fo and f, are known, then (4.13) may be carried out by a likelihood
ratio test. In the case where fg and f, are both Gaussian, and o§#0%, the

test becomes

pi=1
lng| 2 T (4.14)
;=0
To filter {B;!, perform the test
p;=1
LU >
2 Pie Z m (4.15)
aa p;=0

for some integer m=20. If m =0, no smoothing occurs, and p,; =p; for
every 1. If m >0, the test (4.14) is a voting algorithm, where the outcome
is the majority state in a window of length 2m+1, centered about p;.
Since P; € {0,13, the smoothing algorithm is a special case of the median
filtering algorithm; properties of median filtering have been studied
recently by Gallagher and Wise [23]. It will tend to preserve transitions
into a new state with run length greater than m +1 (edge-preserving pro-
perty), while tending to suppress runs with length less than m (impulse

filtering property).

Nonparametric Algorithm Analysis

To calculate the error statistics of the smoothed sequence {p,}i, it is
first necessary to calculate the performance of the sample-by-sample
test (4.14). As it is a binary hypothesis test on individual observations

elements of {n;{, two errors are possible:
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Pio = Prob(sayp; = 1| e; =0) = 2[1—Fo(T)] (4.16)

poj1 = Prob(sayp; =0 | e; = 1) = 2F(T)-1 (4.17)

where F' is the cumulative distribution, and the densities are symmetric

about zero. The correct decision probabilities are given by

P11 = 1—Pop (4.18)

Pojo = 1=Pijo
Note that the error probabilities are a function only of the value of ¢;.

Calculating the performance of the filtered sequence is more com-

plex. For convenience, we first define the vectors
e; = (ejm, - ' @54m )
and
Pi = Bi-m. -+ - Pism)
and the length 2m +1 vectors

0=(0,...,0)

1=(1,...,1)

If e; =0, each outcome in P, is the result of a Bernoulli trial with a con-
stant probability of success on each trial. A particular element in the
filtered outcome {p;{ will be in error only if at least m +1 elements in Pi
are unity. The error probability is given by the cumulative binomial dis-

tribution with constant probabilities in each trial.

2m+l 2m +1
p1po(i) = Z k (ﬁxlo)k(pow)zm_kﬂ (4.19)
k=m+1



Similarly, for e; =1,

dm+l Pm+1
puniy= 3 [ |Bon Bun)amr (4.20)
k=m+1

The two remaining cases are for nonhomogeneous e;. This situation
occurs when the 2m +1 filter window contains a state transition of fe;l;

for example, e; =(0, . ..,0,1,...,1).

For the first remaining case, suppose e; =1, and let mo+m,=2m +1,
where mg is the number of zeroes in e;, and m, the number of ones.
Assuming that the state run lengths are greater than 2m +1, a state tran-
sition in e; means there are mg zeroes followed by m, ones, or vice versa.
The noise observations {n;{ are independent and each ®; is an indepen-
dent Bernoulli trial outcome. However, e; is not homogeneous, and the
probabﬂities of the outcomes of p; vary; therefore, p; is distributed as

the outcome of a binomial experiment of 2m +1 Bernoulli trials with vari-

m
able probabilities of success [22, p. 282]. The statistic ), P;4x in the

k=—-m
test (4.15) may be thought of as being the sum po+p,, where p, is the
binomially distributed outcome of my Bernoulli trials with constant pro-
babilities, and p; the outcome of m, trials. The probability of making an

error, given that e; =1, is

2m

m ™m
pn(i)= 5 )] [,Cf](ﬁow)’”(zmo)"“’"“’[kf](fw"l(z:m)"‘*** (4.21)

j=m+] k°+k1=j

where 0<kgo<mg and 0<k,<m,;. The summation indices £y and k£, may
be interpreted as the number of times in p; that B, =0 given e; ., =0,

and the number of times p;., =1 given e;. =1, respectively, with



-125-
-m<k<=m. If my=0, then (4.21) specializes to (4.20), the probability of
deciding p; =0 when e; =1
Treatment of the second remaining case of nonhomogeneous e, is

similar. Given e; =0, the probability of deciding p; = 1 is given by

T
(ﬁno)ko(ﬁolo)mo ko[kl (ﬁm)kl(ﬁou)ml—kl (4.22)

2m+1 mq
pro(i) = )] > [ko

where the indices kg and k; may be interpreted here as the number of
times in P; that ;4 =1 given e;4, =0, and the number of times Bl =0
given e, =1, respectively, for —m <k<m. If o =%, then (4.21) and

(4.22) are symmetric in mq and m,.

While the error probability 5 for elements of the unsmoothed
sequence {B;} is a function only of e, after smoothing the. sequence the
error probability p(1) is a function of the subsequence e;. The perfor-
mance analysis of Appendix 4.2 requires time invariant error probabili-
ties. If the statistics of the state run lengths of te;} are known, then the
expectation of poii(i) and pio(i) may be taken and used in evaluating
(4.12).

The choice of filter length 2m+1 affects the error performance.
There are two competing considerations: on the one hand, it is desirable
to make 2m +1 as large as possible, for the error probabilities decrease
with increasing filter length, provided a state transition does not ocecur
within e;. On the other hand, making 2m +1 small reduces the probabil-

ity of making errors in the vicinity of a state transition.

The following argument will assist in choosing 2m+1: For the test
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(4.15) to recognize a state transition, at least m+1 elements of P; must
take on the value of the new state. If the last m +2 elements of e, belong
to the new state, on the average the last (m +2)p;|. elements of p; will
take on the new state value, and conversely if the first m +2 elements of
e; take the value of the old state. It is reasonable to choose m so that
(m+2)pz ) >m +1, ensuring that ;. contains on the average at least
m+1 correct state decisions, given that a state transition occurs between
e; and e; .

A simple manipulation shows this condition is equivalent to

2m+1< min Hzz=1

= (4.23)
z€l[0,1] 1—'0: |z

The minimum nontrivial filter length is 2m+1 =3, which leads to the

. N 2
requirement that mi ziz = =—.
SRRt LRI Pl

Performance of the Nonparametric Algorithm

As was shown in the last subsection, three parameters determine the
error performance of the sequence estimation algorithm: the sample-by-
sample decision errors po: and pio, and the filter length 2m+1. The
effect of these parameters is examined in the following set of figures.

The performance of the threshold test (4.14) is a function of the
threshold T, and the densities f, and f,. In particular, when the two
densities are zero mean Gaussian demnsities with variance ratio 0/ og, the

decision probabilities become

P1o = RS(=T/ og) (4.24)
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and
pin = R2¥(-T/ 0,) (4.25)

where ¢ is the cumulative distribution function of the unit variance Gaus-
sian density. It is natural to present the performance of the test (4.14)
via a set of receiver operating curves, shown in Fig. 4.11. As is intuitively
obvious, and clear from the figure, the probability of recognizing an
impulsive sample increases as the distinction between background and

impulsive variances increases.

The next three figures consider the effects of Bo;; and 1o upon the
performance of the filtered sequence {p;}. Here, the median filter has a
fixed window length 2m +1, and the values of oj1 =10 are allowed to vary
The left side of the plot represents situations where e; = 1, and the major-
ity of the states in the observation window e, are ones. Thus,
m+l<m,;<2m+1. The right side of the plot represents situations where
e; =0, and the majority of states in the observation window are zeroes.
Thus, m+1<=my<2m+1. The implicit assumption in the performance
plots is that the state run lengths are always greater than 2m+1. If a
state. run length were less than m+1, the impulse filtering property of
the median filter would tend to suppress recognition of such a short state
run. As a result, when the state run lengths grow small relative to m+1,

the error probabilities asymptotically approach unity.

Fig. 4.12 examines the effecl of various values poj: = p1jo with the filler
length fixed at 2m+1=9. Error probabilities of the smoothed sequence

increase monotonically with increasing probability that »; is in error.
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P11

Fig. 4.11. Operating characteristic for the threshold test giv-
ing p; for Gaussian-Gaussian switched burst noise. Note that
performance is not a function of ¢.
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Fig. 4.12. Error performance of smoothed sequence {p;}
evaluated for various threshold test error probabilities and
Po1=p10o when e; contains a state transition. Filter length is
2m+1=9.
1 - ey,
1072
10~4F
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Fig. 4.13. Error performance of smoothed sequence {p;}
evaluated for various threshold error probabilities when e;
contains a state transition. Here, the effect Boj1 # p1j0 may be
seen. Filter lengthis2m+1=9.
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Notice that when e; is near a state transition, mg,m=m+1, and correct
reconstruction of a state value becomes orders of magnitudes more
difficult than when e; is not near a transition and mgm,;~2m+1. When
no state transitions occur within the filter window, e; is either O or 1
This condition will be denoted as steady state, and the probability that p;
is incorrectly classified is at a minimum. The steady state error probabil-

ities are the quantities
p”°]mo=2m+1 (4.26)
and

Po1 (4.27)

m=2m+1

The effect of varying po;1 while keeping g1j0 fixed is examined in Fig.
4.13. By symmetry, conclusions from this case may be applied to the
complementary situation. Unexpectedly, increasing po: decreases pujo.
This effect is operative only when e; is near a state transition, and the
effect diminishes as e; moves away from the state transition. For exam-
ple, assume e; =0. Then errors in §; after the 0»1 or prior to the 1-0
transition in e; contribute favorably to the filter test statistic when e; =0.
As the state transition propagates through e;, there are fewer opportuni-
ties for B; to incorrectly take on state value zero within the filter window.
Thus, larger values of Po;: tend to diminish the probability of failing to

recognize that e; =0.

The effect of changing the filter window length is examined in Fig.

4.14. Here, po1=p10=.90, and 2m+1 is allowed to vary. As the filter
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Pilo
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Fig. 4.14. Error performance of smoothed sequence ;3
evaluated for different filter lengths 2m +1 with Bojs =5110=.90
when e; contains a state transition.
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length grows, it becomes relatively more difficult near a state transition
in {e;} to properly classify p;. However, this is compensated by the fact
that the steady state error probabilities diminish rapidly with increasing
filter length. Note that, when e; is in steady state, the error probabilities

of p; again are functions only of e;.

4. Simmulation

The algorithm developed in this chapter was applied using the
selected high kurtosis Arctic under-ice noise data to simulate a noise
source. This data was described in Appendix 2.1 of Chapter 2, and used in
the siimulations of the previous chapter. As before, the mean of each of

the 58 selected blocks was adjusted to zero.

To carry out the test (4.14) and form the sequence {f;], the test
threshold was chosen as 1.2823, where & is the variance of each block,

calculated as

3 {1024

_1 K& -
T0zd &, ™

The value T =1.2825 corresponds to an error rate of pij0=.20 if the noise
distribution is indeed Gaussian. If the noise is a background Gaussian
noise with a high variance Gaussian impulsive contaminant, then &
overestimates the background variance, and p:0<.2. Similarly, &
underestimates the variance of the impulsive component. In typical
situations, the impulsive component is present for only a small propor-
tion of the time, and the variance ratio 0¥/ 0#> 1. Therefore, while a

threshold of 1.2820 would correspond to an error rate of pojs = .80 if the
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noise samples belonged exclusively to the impulsive mode, it is far more

likely that .80 > po;: under the stated conditions.

With the threshold set at T =1.2825% the sequence {p} was formed.
Various window lengths were used to smooth {p;}, and the best overall
estimated value of ARE;, ,; (described later) was obtained with a window
length 2m+1="7. Fig. 4.15 presents a representative block of noise data

and the corresponding subsequence of {p,}.

The non-Gaussian nature of the noise distribution is demonstrated in
Fig. 4.16, a Q-Q plot of the empirical distribution of a sample noise data
block versus the unit variance Gaussian distribution. In this plot, a Gaus-
sian sample distribution would appear as a straight line. For noise sam-
ples near the mean, thé plot is approximately linear. For large samples,
the empirical noise distribution has a spread greater than that of the
Gaussian distribution. Thus, it may be concluded that the noise sample is

heavier-tailed than a Gaussian density.

Since the smoothed switching sequence {p;} estimates {e;} and
classifies each noise sample as either a background or impulsive noise
process observation, the noise samples may be segregated, and the vari-
ances 35 and 812 may be estimated. Using these estimates and the
sequence {p;}, each noise sample in the observation block may be nor-
malized to unit variance. Fig. 4.17 presents the data of Fig. 4.15 after
this adjustment. Distinct spikes no longer appear in the plot, save for a
single spike near sample 800, where {p;} may be in error. The Q-Q plot of
the normalized data is shown in Fig. 4.18. The resulting plot is more

nearly a straight line, indicating that the normalized data is now
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Fig. 4.15. Comparison of sample Arctic under-ice data
record 22<0 and corresponding subsequence of {p;]. Vertical
scale of the noise is in standard deviations from the mean. A
threshold of 7 = 1.2820 and filter length 2m +1 = 7 were used.

4t
noise . i
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quantiles |
-41
-8 L : . : : : ,
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Fig. 4.16. Q-Q plot showing sample quantiles of sample Arclic
under-ice data record 2220 prior to processing versus the
quantiles of a zero mean unit variance Gaussian distribution.
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0 256 512 768 1024
sample no.

Fig. 4.17. Normalized sarggle Arctic under-ice noise data
record 2220 after {p;} and 7/ 6% are used to adjust the data.
Vertical scale is in standard deviations from the mean.
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Fig. 4.18. Q-Q plot showing sample quantiles of normalized
Arctic under-ice noise data record 2220 after {p;} and 6%/ 5§
are used to adjust the data versus the quantiles of a zero
mean unit variance Gaussian distribution.
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Gaussian. Therefore, we may conclude that the algorithm provided an
effective means of distinguishing between the background and impulsive

noise samples.

For the particular data block of Figs 4.15 - 4.17, approximately 5.6%
of the samples are classified as impulsive noise, and the variance ratio is
estimated as 95/ 98 =31.3. These estimates may be used in (4.9) to esti-
mate 7nss by simply setting of=1, and letting 0#=56%/5¢. In this case,

AREgp 1g =2.55 is the estimated performance improvement.

Using the switched burst detector algorithm, all 58 of the high kur-
tosis data blocks may be analyzed, allowing ¢, and 6%/ 6% to be estimated
for each data block. Fig. 4.19 gives the estimate of ¢, and the estimate
of the variance ratio is given in Fig. 4.20: Fig. 4.21 presents the values of
AREgp ;g for each data block derived by substituting these estimates into
(4.9).

Over the 58 data blocks the cumnulative average parameters were
computed, giving £=.089, and %/ 6§ =9.03. These parameter values lead

to AREgp 4 = 1.58 as an estimate of the processing gain.

The switched burst detector may be compared to the adaptive detec-
tors of the previous chapter. Fig. 422 shows AREg, 4 plotted with

ARE d and ARE d- Here, it is clear that the switched detector out-
Gtm., ga.

performs the non-switching adaptive detectors. This result is not unex-
pected, for the results of this chapter indicate that gss outperforms g, in
Gaussian-Gaussian switched burst noise, and the last chapter indicates

that g, slightly outperforms both g¢m and gem in Gaussian-Gaussian e-
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Fig. 4.19. Estimated ¢ for each sample noise data block.
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Fig. 4.20. Estimate of 3%/3§ for each sample noise data
block.
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Fig. 4.21. Estimated performance of switched burst detector
SB relative to a linear detector /2@ for each sample noise data
block.
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Fig. 4.22. Estimated performance of the switched burst
detector SB relative to a linear detector ld (broken line) with
the estimated performance of nonlinearities g;,, and gy rela-
tive to ld (solid lines) for each sample noise data block.

60



-139-

mixture noise. As noted earlier, the expression for the efficacy of a fixed
detector in Gaussian-Gaussian e-mixture noise is identical to the expres-
sion for efficacy in Gaussian-Gaussian switched burst noise when
go=9g1=g., where g is some fixed arbitrary detector. It follows then, that
gss will outperform any fixed detector nonlinearity if the Arctic under-ice

noise is indeed a Gaussian-Gaussian switched burst noise.

5. Conclusion

We have presented an argument in favor of a lime-varying nonlinear-
ity for use in a LO detector structure when the signal is embedded in a
type of impulsive noise that classified here as a swilched burst noise. The
nonstationarity part of the structure is easy to implement: it merely
requires switching the observations between two fixed nonlinearities.
Analysis of the algorithm indicates that this detector is capable of
improved performance over a fixed structure. A simple lechnique for
determining the presence of noise bursts has also been proposed, and its

performance was exarnined.

It may be argued that the additional complexity of two nonlinearities
and a structure to estimate the switching sequence f{e;!{ is not warranted
by the relatively modest improvement over the fixed nonlinearity [«
Several points are in order: First, a complex nonlinearity is replaced by
two linear amplifiers and a switch. Second, the exact shape of g, is a
function of the impulsive proportion ¢ and the variance ratio 02/ 0. In
the proposed algorithm, {e;{ would be determined by observation of the

noise behavior, and the exact value of ¢ is of no importance to the
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switched detector. The ratio of impulsive to background variance is
important, however, since it will determine the gain ratic of the two
linear amplifiers. This is easy to calculate, since {e;{ separates the noise
observations intc a stream of observations from the impulsive noise pro-
cess and a stream of observations from the background noise process. As
a result, the two variances may be calcalated in a straigtforward and

appealingly natural manner.

An assumption made in the example was that the impulsive com-
ponent could be adequately modeled by a high variance Gaussian density.
It might be desirable to use some other heavy tailed noise to model the
impulsive component, for instance, a Laplace density. This has some
intuitive -appeal: It may be assumed that the impulsive component itself
may be modeled with an additive mixture density in a fashion similar to
Huber [18]. .Then, as the contamination parameter approaches unity, the
mixture density approaches the Laplace density, whose LO nonlinearity is
the sign detector. Thus, go would be a linear detector, and g, a sign
detector. Alternatively, g, might be chosen to be an amplifier-limiter, a
noise blanker, or some other nonlinearity that gives the test statistic a

degree of robustness against impulsive noise bursts.

One interpretation of the proposed structure is that switching
between two linear detectors is not necessary. Instead, the proposed
structure could be regarded as a linear processor with some sort of
automatic gain control, which can quickly and accurately adjust an
amplifier gain and hold the noise variance constant. A linear detector

with continuously adjustable gain is equivalent to the limiting case M-
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of a switched burst detector where the detector switches between M

linear amplifiers.
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Appendix 4.1

In this appendix, an expression is developed for the efficacy of a
detector that switches between two nonlinearities gy and g, in accor-

dance with a control sequence e;. For the sake of compactness, Ey,

no .
denotes the n-fold expectation with respect to the density H f*(z;), and

1=1

E,, denotes univariate expectation with respect to fo

as

The efficacy of a detector using test statistic T, is defined by [5,6,9]
3
2 e

]2

gs

2 =0

371 711,1 oo T vary 1 ;i
- Hyin

(A4.1)

A regularity condition causes the signal s to vanish asymptotically, ensur-
ing that the probability of detection does not converge to unity as n
grows without bound [5,9]. Another interpretation is that (A4.1) is an
incremental signal-to-noise ratio [6,7!, and the regularity conditions

guarantee that as n»~, the incremental SNR remains finite.

The test statistic for the switched burst detector can be written as

T, = é}lg.;a(:ri) (A4.2)

= Ll(1—e;)golz:) + e;9,4(z;)]

since e; takes on only the values of zero or unily. Then

Ey,Tn = 3 [ [(1-ei)go(z: +5) + esg1(zi+s)] (A4.3)

1 —0o
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X [(1=e;)f olz;) + euf 1(z;)]dz

We use the fact that (1—e;)?=(1—e;) and e?=e; and that e;(1—e;)=0 to

obtain

EHITn = Z(l_ei)EfogO(zi+s) (A44)

1
+ ZeiEflgl(:z:i+s)
1

Finally, making the usual assumption that the order of expectation and

differentiation may be interchanged, we have
——-—EHl =E; 90 Z(l—e )+ Ef g, Z‘e (A4.5)

Without loss of generality, we will assume g, has zero mean under f,

and g, has zero mean under f;. Then vary 7T, = EHDT,f. Here,

2

n
Eu, T2 =Ey | Y [(1-e;)go + e;91] (A4.6)
i=1
The sumnmands in (A4.6) may be rearranged to obtain
g1 = By, D[(1-e)98(z) + eig ()] (a4.7)

+ EHD;‘#;[ 1—e;)golz;) + e;91(z;)]

x [(1—-e;)g0(z;) + e;9:(z;)]

The sequence f{z;} is independent, and gy and g, are memoryless
transformations; therefore the second expectation on the right side of

(A4.7) equals zero. Thus,
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Ey, 2= Ef,‘]gz:(l"ei) + Eflglzzei (A4.8)
T L]
Substituting (A4.5) and (A4.7) into (A4.1), we find

2
Z(l-ei)Ef,,‘Jo' + ZeiEf,Q 1']
1 1

nr, = lim (A4.9)
A nZ(l—ei)Efogoz + Z&,;Eflg]z}
1 T
After multiplying through by =2 and taking the limit, we have
1 ] 2
[(1_5)Ef090 +8Ef191]

" (1-e)E; 98 + ¢Ep gf
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Appendix 4.2
The previous appendix formulated the efficacy for the switched burst
detector assuming perfect knowledge of the switching sequence f{e;. In

this appendix the result (A4.10) is extended to account for errors.

Suppose e; is the true sequence, but errors are made randomly in
choosing between detectors go and g,. Let p; €{0,1} represent the deci-
sion at observation time 1 to choose gq or g,, respectively. In the ideal

case, p; =e; for —= <1 <=, Tomodel the effect of errors, let

Prob(p; =1|e;=0) = pipo (A4.11)

Prob(p; =0 e; =1) = pop (A4.12)

be the posterior probabilities of determining p; incorrectly, where the

posterior probabilities of correct detection are given by

Poio = 1—p110 (A4.13)

pin = 1—pon (A4.14)

Clearly, it is desirable to have pijo and poj: as near zero as possible. From
the point of view of the detection system, {e;] is a deterministic
sequence, and {p;! is a noisy estimate of {e;}. It is assumed that (A4.11-
A4.14) are time invariant.

Rather than repeat the derivation of Appendix 4.1, only the
significant modifications in the derivation will be noted. The correct deci-
sion sequence f{e;{ in (A4.2) and its sequels may be replace by the cor-

rupted decision sequence {p;}. Thus, the test statistic 7,, becomes

T, = Z[( 1-p;)g oZ; ) +p:i91(z;) (A4.15)

)
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The expectation of p; may be taken with respect to its posterior distribu-

tion:
1
if e; =1, then Eptle{ - Ek Prob(p,- =k | e; = 1) = P
k=0
1
ife; =0, thenE, ., = > k Prob(p; =k | e; =0) = pop
k=0
Therefore
Ep, je,pi = e;p1n+(1—e;)pipo (A4.17)
Eple,(172:) = espois+(1—e;)popo (A4.18)

Applying these results, the expectation of 7,, with respect to the poste-

rior distribution of p; may be written as

EpejocTn = D2(1=e;){pongolz:)+om1g (2] (44.16)

1
+e; Pmngo(zi)wmgl(xi)]
1
Following the same arguments as in Appendix 4.1,

(1-e;) (A4.19)

6 1 [
aTEHlEPdet T, = EfO{(Jomgo +po|1gl]
1

n
1=

T
+Ef1LOOIL90'+p11191'] 2.8
i=1

To compute vary T, the arguments in Appendix 4.1 are paralleled,

giving

Epflq Tf = ;Ep{(et[“—pi)gg(zi)+piglz(zi)



-147-
+ 2 Dy ooy (1 P00 ) 479 (2] (1P )g o2 4291 (25)]
The single summation becomes
Zi:(l—ei){uouogc?(xi)wuogf(zi)right)ﬂi Loougc? (Ii)+pz|1912(zi)]

Depending on the reconstruction algorithm, {p;{ may or may not be an
independent sequence, so the double summation term cannot be dropped
after expectation with respect to p; |e;. However, every term contains a
cross product g (z;)g (z;) with 2 # j. Thus, the expectation with respect to
Hy of each term in the double summation is zero, for {z;} is an indepen-

dent sequence, and gg and g, are memoryless. Therefore,

EHoEp,je, T# = By foog 8 +p10 Y 2 (1-e,) (A4.20)

7
+ Efl[Dollgoz"'Plllglz]Eei
1

Following a similar computation as (A4.9), it may be concluded that

2
3 {(1—8)Ef,,LOo|oyo'+puog1']+€Efxbaongo'+pmgz']]

777’,‘ - 2 2 2 2
(1-6)Ef,,kouogo +pl|°gl]+€Efl[0°|190 +pu:91]

(A4.21)

Equivalently, noting (A4.13) and (A4.14), the expression for efficacy may

be rewritten to depend only on the error probabilities

2
_ r(l—e)Ef‘,[(l-puo)g 0 +pijg 1'] +eEy ,Loougo'“"(l—pxlo)g 1”

(1—8)Ef°[(1-puo)9§ +p1109 i2]+5EflL)°llgg +(1-pon)g 12]

nr, (A4.22)
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App'roximatio_n of
Locally Optimum
Detector Nonlinearitiest

An interesting problem arising in detection is the following: given
that the true noise density f and the true detector.nonlinearity Jopt are
knowm, what is the best way to approximate g,,; within some specified
constraints? This chapter provides one possible solution to this broadly

posed question.

Section 1 reviews the theoretical background of the problem, and
states the objective more precisely. Section 2 presents a theorem and
proof showing the equivalence of a minimum mean square error
(minimum MSE) approximation approach and an efficacy maximizing

approach. Section 3 provides some numerical examples as illustration of

T This chapter is based con work done in collaboration with K S. Vastola of Prince-
ton University; a different version of this chapter appeared as a coauthored paper

[15].
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the theorem. A summary of the chapter is presented in Section 4.

1. Introduction and Problem Statement

As discussed in Chapter 2, the locally optimal (LO) detector structure
is useful for the detec‘tion of a signal which is known, but very small rela-
tive to the noise environment. For detecting a (constant) weak discrete-
time signal in the presence of white non-Gaussian noise with first-order
density f, it is well known that the LO detector consists of a mermoryless

nonlinearity (ZNL) of the form

9ro(z) = “‘?%;—))— (5.1)

followed by summation and comparison with a threshold.

Obviously, when the functional form of f is known explicitly, it is pos-
sible to F:alculate the exact form of g;o. However, it may not be appropri-
ate to implement the exact function g,4; instead, it may be desirable to
implement some suboptimal nonlinearity §. Possible reasons fox; this
may be that g is in some sense easier to implement or more easily adapt-
able to changing noise environments. For instance, § may be a ZNL with
a simple parameterization. Other considerations may be that the best
estimate of g, (e.g., via density estimates) is too rough or has no closed

form representation.

When dealing with weak signal detectors, the usual measure of per-

formance is efficacy [1-4], which can be defined by the following equation

_ EZ(g)
Tlf(g) = _——Ef T

3 (5.2)
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where E, is the expectation with respect to f. Without loss of generality,
we assume E;(g) = 0. The eflicacy (5.2) can also be thought of as an
incremental signal-to-noise ratio or as the processing éain achievable
using detector nonlinearity g when the noise has density f. In principle,
the problem discussed above may be solved by maximizing (5.2) over the
family of possible ZNL’'s which we choose to admit. Unfortunately, in
practice this is not often a simple thing to do, and an alternative

approach is sought.

2. Theorem and Discussion

The theorem preéented below yields a m(ethod for finding the best
nonlinearity over a class of suboptimum nonlinearities. Basically the
theorem states that this préblem is equivalent to that of finding the non-
linearity which is closest to g;, in the mean square sense. Several
related results have been obtained in recent years. For the specific prob-
lem of designing detector quantizers, Kassam [5] and Poor and Alexan-
drou [6] have shown that a close relationship exists between maximum-
efficacy quantization and quantization minimizing the mean square dis-
tortion relative to g;o. Also, in the more general setting of strong mixing
(dependent) noise, Halverson and Wise [7] have shown that if a sequence
of nonlinearities {g, | converges in mean square to g;, then the efficacies
{ns(Gn)} converge to the optimal efficacy Ny (gLo). Note that "mean
square”, as used in this context, is with respect to the measure defined

by the noise distribution.

Within the problem setting of Section 1, the following theorem is a

generalization of the results in [5] and [6] discussed above.
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Theorem. Given a noise density f, its LO nonlinearity g;,, and

a family G of candidate suboptimum nonlinearities, the solu-

tiong* € Gto
ny(§7) = max 7y (§) (5.3)
is the same as the solution §* € G to
Ey(§°~9.10)° = min E; (§-g10)* | (5.4)
subject to a simple normalization of the elements in G.

Proof. Under the mild conditions of the Pitman-Noether

Theorem [1,3]

_ e @

(5.5)
Jo¥=z)f (z)dz

T)f(g)

Our problem is: Given a class G of nonlinearities and a density

f.find g°* € G solving

max 77 (g) (5.6)

Since the efficacy of a nonlinearity g is invariant under a scale
change (i.e., ny(cg) = n,(g) for every c # 0), we can multiply

each nonlinearity g by the constant

] | fope)s @)z |
7| fe¥@)f (2)d=

sen[9(2)f ‘(z)dz (5.7)

This allows us to assume, without loss of generality, that for

everyg € G
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J9%@)f (z)dz = [gRo(z)f (z)d= (5.8)
and
S9@)f @)z <0 (5.9)
Now consider the MSE problem
min f(g(z)-g10()f (2)dz (5.10)
We have straightforwardly that

J(g(z)=g10(2))?f (z)dz
= [9¥z)f (z)dz ' (5.11)

—2[9(2)g10(z)f (z)dz + [gi(z)f (z)dz

From (5.8) and (5.1) the MSE becomes

= 2| f95(2)f (2)dz + [o(x)f (x)ds]
Because of (5.9), we see that minimizing this over G is
equivalent to maximizing {fg(::)f’(z)d.z]z. By (5.8) the quan-
tity fgz(:z:)f (z)dz is constant over G; thus we have the con-
clusion that minimizing the MSE (5.10) is equivalent to maxim-

izing the efficacy functional given in (5.5). ®

Discussion

Thus, given f and g;p, as well as G, a family of approximations, the
nonlinearity g * which maximizes efficacy over the family G is sifnply the

minimum mean square error approximation to g;o over G. Solving the
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minimum MSE problem‘ (5.4) is often easier than solving (5.3) directly,

especially when G is a parameterized family.

For the purposes of the proof, each element in G was multiplied by
the constant ¢y, but in practice it is not always necessary to precondition
each membér of G. If one were trying to solve the MSE problem over a
paramelerized family of nonlinearities, say, G={g(z;a)}, with a an m-
vector of parameters, the simplest approach is to merely treat ¢, as an
additional parameter controlling the scaling of g. The new problem then
would be to find the minimum MSE estimate of g0 in G= {c,§(z;a)} where
i',he new parameterization is the (m +1)-vector (c;,a). If an explicit ampli-

tude parameter is already an element of a, then this modification is

unnecessary and (5.4) may be solved directly.

The theorem provides support for certain intuitive ideas about
suboptimal detection. Previous work with suboptimal structures [8-14]
suggests that near optimal efficacy is possible if the suboptimal structure
g appears "close to"” grp. Further refinements making g "closer” to g;¢9
yield only minor improvements in performance. Since efficacy is directly
related to the mean square error between § and g, it is easy to see that
small errors in § (relative to g;p) tend to be deemphasized, at the
expense of emphasizing the gross errors. Furthermore, the square
errors are weighted by the noise density; for unimodal densities, points
in the tail region are weighted much less heavily than those near the

mode.

These points illustrate why a great deal of latitude is available to the

designer in choosing the tail behavior of g, while the shape of the central
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region must be chosen much more carefully. In particular, for heavy-
tailed noises, reasonable performance levels may be attained by carefully
matching the shapes of § and g;p near the poise mean, and choosing
more roughly the limiting or blanking behavior of the tail regions [8-14]
Also, note that the adaptive nonlinearities of Chapter 2 typically were
good matches to g;o near the noise mean, but only loosely approximated
the tails of g;p. In the examples given, these suboptimal adaptive non-
linearities achieved high levels of performance with respect to the
optimal nonlinearity. Additionally, in Chapter 3, the only nonlinearities
that were substantially suboptimal were cases in which there was a poor

fit near the origin.
3. Examples

Known Density

Sinc;e maximizing eflicacy is the same as solving the MSE problem,
the best approximation in G is the projection of g;o onto G. As an illus-
tration of this point, suppose G is the span of a finite set of basis func-
tions ¢;, witht =1, . . . | N, where the p; are orthonormal with respect to

S . An approximation § will take the form
N
§=2a%e; (5.12)
i=1

where the o, are not all zero. Solving (5.3) directly requires simultaneous
solution for {a;} in an N-dimensional quadratic form. Solving (5.4) leads

to the solution a; = E; (gro9;) fori =1,...,N.

This approach is probably most useful in an analytical context, for
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detailed knowledge of f is necessary to generate the orthonormal basis
set. If f is not available, a set of N basis functions may still be generated

provided 2N moments of f are known [17].

Unknown Density

In this example, the theorem is applied to smooth an estimate of gzp.
Using a finite number of noise observations, {X;}/L,, the kernel density
estimation procedure of Parzen and Rosenblatt [16,18,19] is used to give
f and f', estimates of the density and its first derivative. The LO non-
linearity may then be estimated as §;o(z) = —f'(z)/ f (z). Unless N is
very large, §;0 Wwill be rough, and it will be desirable to find F10, @
smoothed version of the estimated norilinearity. By the theorem, a
smoothing technique based on a minimum MSE criterion would yield the

best performing ;0.

Consider the following numerical example, where the {X;{ are 100 iid
observations of a zero mean, unit variance noise process with Gaussian-
Gaussian c-mixturé density, €=0.1, and ¢%/0§=100. Using the finite
width polynomial kernel and window sizing procedure discussed by Silver-
man [16], both f and f’ were estimated, and ;o was computed. Figures
5.1 and 5.2 compare _f to the true demnsity.

-z%/2

e\/gﬁ x(1,z,z2z%). Ina

To smooth §;p, it was projected onto G =

practical problem, f is unknown, so the expectations are computed with
respect to the empirical cdf. Solving the MSE problem (5.4) requires the
simultaneous solution of four linear equations. The result is a smoothed

estimate



Fig 5.1. Estimated density f (broken line) and the true
Gaussian-Gaussian e-mixture density f (solid line)

Fig. 5.2. Comparison of f (broken line) and f (solid line) on
a logarithmic scale.
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-z2/2
Bro(z) = (Baz+Ban™+fiz +6) £ =

Figure 5.3 compares G and §;p, and Figure 5.4 compares §;o and the

true LO nonlinearity g;,. For this example, AREﬁLo 14> 8.58 and
ARE.. =.951, where ARE is as defined in Chapter 2.
910910

In this example, G is not orthonormal with respect to the noise den-
sity. It was chosen for convenience and "nice” smoothness properties.
This example, and work by Modestino [20], suggest that elements of G
could be various generic detector nonlinearities, where the coefficients Bi
would weight the contribution of each nonlinearity. Sorpe adaptive pro-

cedure could observe the noise and update the coefficients §;. _

4. Conclusion

When replacing a known locally optimal nonlinearity with some
suboptimal nonlinearity, it is desirable to have a method which is simple
and generates a nonlinearity which preserves a high performance level.
We have presented a proof of the equivalence of efficacy maximization
and mean square error approximation. MSE minimizing procedures have
many appealing properties, and they have a rich history in both theory
and application. Often relatively simple algorithms may be found for car-
rying out the calculations, and it is possible that these methods may now
be applied fruitfully to the problem of designing maximum efficacy

suboptimal detector nonlinearities.

There are several other useful interpretations of the thcorem. The

first is that, since the MSE performance measure involves only a single
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Fig. 5.3. Comparison of the estimated nonlinearity gro (bro-
ken line) and the smoothed estimate §1p (solid line).
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Fig. 5.4. Comparison of the smoothed nonlinearity §ro (bro-
ken line) and the true nonlinearity g;0 (solid line).
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integral, we can study the contribution of an isolated region of the non-
linearity to overall mean square error, and therefore, its relative contri-
- bution to performance degradation. As an example, this allows us to
examine the sensitivity of performance with respect to changes in the
nonlinearity over certain regioﬁs of the input axis. Often, the behavior of
a nonlinearity’s tail region is of particular interest, and the simple rank-
ing of performance sensitivities afforded by the use of (5.10) would allow
the relative merits of various tail configurations to be studied indepen-
dently of the shape of the rest of the nonlinearity. Zero mean square
error in the tail region would indicate that the tail is "locally optimum in
that region”, and therefore provides the best possible contribution to

overall performance.

One area of interest still open is the question of approximating the
small sample (Neyman-Pearson) detector. It would be worthwhile investi-
gating the properties of minimum MSE approximations to the NP detec-

tor nonlinearity.
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Detection
and Small Sample
Performance Measuremeni

Previous chapters have been concerned mainly with locally optimum
(LO) detection. As pointed out, LO detection may be régarded as a limit-
ing worst case, optimal only in an asymptotic sense. For finite sample
sizes and nonzero signal-to-noise ratios, Neyman-Pearson detection is
optimal in a particular sense. Efficacy is a useful asymptotic perfor-
mance measure, but it does not give much information about the small

sample size performance of a detector.

This chapter will be concerned with developing a performance meas-
ure useful for comparing finite sample detectors which approximate the
NP optimal detector. Section 1 reviews the theoretical background of
this problem, and develops the properties of the proposed performance

" measure, and Section 2 presents some examples applying the resuilt.

-164-



-165-

Section 3 provides a brief conclusion to the chapter.

1. Analysis of the Performance Index Properties

Introduction and Theoretical Preliminaries

Consider the binary hypothesis testing problem:

Hg x~ fo(x)
x=(z;,...,z,)eX? (6.1)
Hy x~ fy(x) '

A straightforward application of the Neyman-Pearson Lemma [1, p. 193]

leads to a threshold test of the form

H,
f1(x) >

folx) [?o

Ayp(x) = T (6.2)

This test is optimal in the sense that for any probability of false alarm
a < ag of incorrectly deciding H, when Hq is true, the probability 8 of
correctly deciding H, when H, is true is greater than any other test with
level a < p. Often, B is called the power of the test. Alternatively, the
measure 1—-8 is sometimes of interest, and is designated as the probabil-
ity of false dismnissal.

As noted in Chapter 2, the statistics ag and 8 a}e difficult to com-
pute. However, one approach to describing the performance of the test
(6.2) is to find bounds on ay and 1—f8 based upon measures of distance
between fo and f;, such as the Chernoff distance [2]. Kailath [3] provides
a summary of classical approaches, and Blahut [4] explores distance

measures and some connections between hypothesis testing and coding.
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An extensive example of Chernoff bounding is available in Van Trees [7, pp

116-133].

These techniques are useful when f, and f, are known exactly, but
unfortunately, this is not often the case. Furthermore, by force or
choice, the likelihood ratio test (6.2) may be altered by replacing f, and
f 1 with incorrect densities pg and p,. Kazakos [5,8] considers the use of
distance-measure-like bounding techniques for hypothesis tests based on
inaccurate versions of the true densities.

The c~ontribution of this chapter is to extend some results on dis-
tance bounding and bounding for detection under mismatch to the more
general situation where the likelihood ratio is replaced by a general
transformation not necessarily defined by the ratio of two unique densi-

ties. It will be useful to make the transformations
Anp(X) = InAnp(x) (6.3)

t=InT (6.4)
and consider the Neyman-Pearson test

H,

Mp(®) 2 ¢ (6.5)
Ho

The log-likelihood ratio Ayp(x) will be replaced by a general detection
processor g(x). The following regularity conditions are assumed with

respect to both the measures induced by density functions fqand f;:

(@) -—w<g(x)<= a.e. inX"
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(6)  folX) #f (%) for some subset of X* with nonzero measure.
Thus, distinctness of the hypotheses is assured. Additionally,
it is required that the measures induced by f, and f, both
be absolutely continuous with respect to each other. This
implies that f, and f,; have common support, and that the
detection problem is not siﬁgular.

(c) =—o<Eyg <E;g <. Therefore, distinctness of the
hypotheses after processing by the detector is assured. This
mild condition merely restricts the processor g to be “rea-
sonable”: observations under H, tend to generate a larger

valued test statistic than observations under H,,.

The regularity conditions ensure that g (x) exists w.p.1 under either Hy or
H;. It uill be assumed that these regularily conditions are satisfied by
all detectors and densiuies considered in the remainder of this chapter.
Using the generalized detection processor g, the likelihood ratio test
(6.2) becomes

g(x) 2 ¢ (6.6)

As an aside, note that g(x) has several common realizations. For

instance, it may be the output of a matched filter, or its approximation.
n

In other cases, g(x)= ) g:(z;), where g; is a memoryless nonlinear
i=1

transformation. When the observations {z;{/-, are independent

Anp(x) = ] Anpi(z;) (6.7)
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Fam) .

——-——is the likelihood ratio of the univariate densi-
fO;z' (11.)

ties of observation z;. It follows from the monotonicity of the logarithm

where Ayp.i(z;) =

function that (6.6) is an NP optimal test when g;(z;) = Ayp.(z;), the log-
likelihood ratio. Memoryless transformations other than the log-
likelihood ratio may be used as g;, and they may be generated by
methods similar to those proposed in the previous chapters, particularly

when the noise density is assumed to be stationary.

Exposition of the Performance Index

For the remainder of this chapter, we consider the the binary
hypothesis test of (6.1), assume a decision will be made according to a
test (6.6), where the regularity conditions are satisfied and g(x) is not
necessarily equal to Ayp(X). As a first step in developing a performance

index for the test (6.6), consider the functionals given by

Definition 1.
Mo(u;g) = In fe»@f (x)dx (6.8)
My(uig)=Infe9@f (x)dx (6.9)
a

Notice that both My and M, are cumulant generating functions, since
they are the natural logarithms of the moment generating function (mgf)
for the random variables produced by the transformation g(x) or —g(x),

respectively. Thus, necessary and sufficient conditions for # to exist and
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be finite is that, for u in some neighborhood about the origin, the mgf of
g exists. A necessary condition for finite # to exist is simply that g (x)

has finite moments of all order.

The following theorem provides bounds on the error probabilities.
Theorem 1. Let a test of the form (6.6) be used to distin-
guish between two hypotheses of the form (6.1), and assume
Mgy and M, are defined as above. If My and M, exist and are

finite, then

(6.10)

1-g < @ +4) (6.11)
Proof. (after [5])

ap = Prob{G(x) >T | Ho]
= Prob{eg(’) >el | Ho]
= Prob{eg(‘)“ >1 | Ho]

< Eo{eduteug(x)]

by the Markov inequality. The proof for the inequality on 1—8
follows in similar manner. ®

The two functionals may be combined to provide a useful perfor-
mance measure for comparing false dismissal error probabilities of two
competing detector structures operating with equal false alarm rates.

Before this is illustrated, it is first necessary to develop
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Lemma 1. If My and M, exist, define the function
7(u;g)=Molu:;g)+M;(u;g). Then

()

T*g)=7r(u*g) = [Mo(u';g)+M1(u';g)} (6.12)

= ngn[Mo(u;g)ﬂ“Ml(u;g)]

exists for some finite u*.
() The minimum value satisfies »(u *;g) <0.
(#1) For any g, the value of u* is unique.

Proof. t

()  Since Mg and M, are cumulant generating functions, they are
convex in u, [8, p. 121]; therefore r is also convex. Observe

that 7(0;g9) =0; it may be shown that lim r(u;g)= .

Y +to0

First, we rewrite the definition of 7(u;g) as
r(u;g) = lne‘“cfe“(-‘”'c)fo + lne“cfe‘u(g*'c)fl

where C is some constant. The region of integration may be

partitioned, giving

r(u,g) = —uC+ulC+ln ev@+0f 4+ eul@+0f,
(g+C)>0 (g +C)=0

1 In this proof, we employ a.e. as the abbreviation of almost everyuwhere. f K g
means that the measure induced by f is absolutely continuous with respect to
the measure induced by g. If f << g and g << f, then the induced measures
are equivalent, and the condition is denoted as f =g. For convenience, the
phrase with respect to the measure induced by will be suppressed in the text.
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+1In

e—u(y+C)f1 + f e—u.(g+6‘)f1
(g+C)0 (g +C)<0

We now consider separately the case u > 0. It follows that

f eu(g+0)fo

(g+C)>0

r{u;g)=1In +1n

e—u(g+C)f .
(g +C)<0

as each partitioned integral is nonnegative. Regularity con-
dition (c) implies that g cannot be a constant a.e. with
respect to fo or f;. Therefore, for some C, the regularity

condition that fo=f, ensures that there exists £€>0 such

that
0% [ fo
g+C>¢

and
o= [ 1,
g+C<—c¢

Because £>0 exists,

+C>e C<-¢

(g +£<-—sf 1]

The latter function grows without bound as u approaches

r(ug) 21n[y f e%tf,

+ InL+f e“‘fl}

> 2ue+in + In

Jo

(g+C)>c

infinity.
For the case u <0, similar arguments show that r(u;g)

grows without bound as u approaches negative infinity also;

therefore, since r(u;g) is convex, some finite u* exists that
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minimizes 7(u;g).

(#) Since 7 is convex in u, to show u*>0 and r(u*;9) <0, it will

be sufficient to demonstrate that O < 0. Here,
ou w=0
gr _ @ . d ;
au - au MO(uvg)+ au Ml(u'g)

_ molu) | myw)
mo(w) | i)

where the m(u) are moment generating functions. Thus,

m(0) =1, and m'(0) =E(g), which gives

or
- = Eqo(g) +Ey(-g)
gu |, _q

Regularity condition (c) ensures that this quantity is nega-
tive. Therefore, the minimum value of r(w;g) exists for some

w*>0, and this minimum value r*(g) is less than zero.

(1) To demonstrate that u* is unique, it will be sufficient to show
that the second partial derivative of 7 (u;g) with respect to u
is strictly positive for all w and arbitrary g. The second par-

tial derivative may be written as

&% _ Se¥fofg%e™so- [fge“gfo]z
& [feugfo]z

fe-ugf 1f92€-ugf1 3 [fge_ugfl}z

[femar )

+

Notice that the functions
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foe =
° feugfo
and
Ji = LS
fe_“gfl

are density functions alse. The expectations with respect to
these two new densities will be denoted by Eg and E,,
respectively. The second derivative may be expressed in
terms of these expectations as

3
ou 2

= [Eou6®~Efi5) + [Ere07-Eig)

which is the sum of the variance of g under fg, and fi,
respectively. The regularity conditions ensure that g is finite
a.e. and not a.e. a constant; therefore fo, =f¢, and f1, = f .
Then g is not a.e. a constant with respect to f o, and f 1¢,» and

its respective variances are nonzero. Thus, when 7(u;g)

] cr . . ! a
exists, —- is strictly positive.
du

The previous lemma demonstrates that for a given g, it is possible to

find the minimum value 7*(g), which shall be designated as a perfor-

mance 1ndez of g. The reason for this will be clear from

Theorem 2. If My and M, exist, then 1-8< al—e(y°+y’) for
0

u >0, and there exists a tightest bound

1-8< al—oe”@) ' (6.13)
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Proof.

" og < exp(—ut +My)
In 0 < —ut +M0

' < My—1n aq
i u

We substitute this result into the bound on false dismissal
probability:
1—ﬁ =< exp(ut +M1)
< exp(Mo—In ag+M,)

1 eH°+H1
Ag

Lemma 1 guarantees that r*(g) exists for a unique value

w*>0. Thus, it follows that a tightest bound al—e"(y) exists.
0

If 7*(g) is to be a useful performance index for comparing detectors,
it must give the best index for the optimal detector structure. Demons-
tration of this fact will require

Lemma 2. Suppose G is a convex set of functions on X™ satis-
fying regularity conditions (e) and (c¢). Suppose Mg and M,
exist for all'g € G. Then My and M, are convex on G.

Proof. To demonstrate convexity of the two functionals it will

be sufficient to show that

Mo(u;6g+[1-6]h) < 6My(u;g) + [1=6]My(u;h)
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for0<d=<1andg,heG.

We begin by recalling Hélder's Inequality:

f -+ -=1, then E|XY| <) 1)

The inequality is applied to the definition of M, with p =

O:lr—~

and ¢ = 11

Mo(u:dg +[1-6]h) = In [eus@e(1=0luh(@ £ (x)qx

[

1-6)uh (1) ——
<In [fe( ) (X)1"6fo(X)dx

f bug(x) - t=0
lfe ¢ fo(x)dx

=6ln fe“'-"(‘)f_o(x)dx + (1-4)In fe""(’)fo(x)dx
= 0Mo(u;g) + [1=81Mp(u;h)

The proof for M, is identical in form. ®
Theorem 3. Let G be the set of all functions on X™ satisfying
() and (c). Then the function 7(u;g) achieves a globally

minimum value for g(x) =Ayp(x) and u = %.

Proof. First, note that if g(x) € G, then Cg(x) € G for any con-
stant C>0. Therefore, minimizing r(u;g) over R,XxG is
equivalent to minimizing 7(%;g9) over G. To prove the
theorem, it will be sufficient to fix u =% and attend to the

minimization problem in G.

To prove existence of a stationary point at g (x)=Axp(x),

a calculus of variations argument will be used.
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Let 6(x) be any arbitrary variation which is not a.e. a con-
stant, and let ¢ be a real number; further, let 6(x) be subject

to the restriction that the perturbed nonlinearity

g(x) = Ayp(x)+ed(x)

remains an element of G. If &(x) is a.e. a constant, then
r(¥%Anp) =T (BAnp+ed).

The functional r (u;Ayp+£d) may be written

r(ug)=In feu[ANP(x)ﬂ“x)]f o(x)dz

+1n fe-u[ANP(x)*tﬂx)]f 1(X)d-7:

For the remainder of the proof, the dependence on x will be
suppressed in the notation. Taking the first derivative with

respect to epsilon yields

ar _ ufdeu[XNp‘l'C&]fo ufde—u[ANp+€6]fl
de f'eu[)\m:+c6] s fe—u[x,vpna] 1

A necessary condition for a stationary point in 7 to exist at

Ayp is that g% = 0 for all possible variations §. There-

t=0

fore, the condition for a minimum is

_ fdeu)‘””fo fde_ux””fl
0 feuANPfo ) feduANPf1

e

But Ayp=1In
NP To

, and u=% and the necessary condition

becomes
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LS D s
Jor b fUrisot

which is fulfilled for any arbitrary variation 6. Therefore, the

conclusion is that

d
—T1(%; Ayp+Ed =0
30 T (K dnpte ):=o

It is easy to show that G is convex; hence, Lemma 2
implies that this stationary point is a global minimum [13, p.
191].

As an aside, note that the global minimum value is
achieved for ény pair of w and g such that ug =BAyp+C

almost everywhere for any constant C. Thus, the globally
minimum value 7(%;Ayp) is not unique. ®

In a binary hypothesis test, the performance of the test is unaffected
by a monotone transformation of the test statistic. Here, the weaker pro-
perty of the invariance of 7#(g) to linear transformations of the test is
demonstrated.

Proposition 1. 7*(g) = r*(a+bg), where the variables a and

b are real numbers, and & # 0.

Proof.

T(u.g) = Mo(u;a+bg)+M,(u;a+bg) (6.14)

=1In fe“(“*'bg(‘))fo(x)dx + In fe‘“(‘"“’g(‘))_fl(x)dx
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=In e““fe“"g(‘)f o{x)dx + In ‘e‘““fe ubs(@ 7 (x)dx
= ua—ua+ln fe“’g(‘)fo(x)dx 4+ 1n fe"”g(‘)f 1(x)dx

= Mo(w;g)+HM,(w;g) (6.15)

Finally, minimization of (6.14) with respect to w obviously
yields the same result as minimization of (6.15) with respect

to w. Therefore r#(g) is invariant under linear transforma-

tionsong.®

2. Application of the Performance Index

The previous section proposed the performance index r*(g) and
developed some. of its properties under very loose regularity conditions
on the two hypothetical densities f4 and f,, as well as on the detection
processor g. The index is usable for dependent as well as independent

noise, and for linear or nonlinear processors, with or without memory.

The iid Noise Case

The properties of the index will be explored here for the case of
independent and identically distributed observations where g is the sum-
mation of outputs of a memoryless nounlinear transformation.

Proposition 2. Let the noise densities of hypothesis test (6.1)

be f (™= ﬁf(.);i(zi), and let the detection processor g(x)
i=1

n
be of the form g(x) = ) g;(z;). Then

t=1

Holuig) = $in[e" s (@), (6.16)



-1789-

Hywig) = Yn fe ™51 @)z, (6.17)

Proof. The proof is a straightforward computation, outlined

here for ¥, as

Mo(u;g) =1In fe®®f (x)dx

=1nf"'l[exp

7 -fo!

%3 0:(z)

n
Hfo;i(xi)dxl"'dxn
i=1
= Inﬁ feug‘(z‘)fo;i(xi)dzi

i=1

= _i:lln Se s iz, )dz,

The proof for M, follows similarly. ®

n
When the noise observations are iid, then f(x)=]][f (z;). Here, the dis-

i=1

tinction between the multivariate and univariate densities should be
clear from the arguments of the densities.

Corollary 1. When the noise is independent and identically

()
distributed, and g (x) = ¥ g,(z;), then
i=1
Mo =nMylu;g,) =n h'lfeugl(z)f oz )dz

S My=nMi(uigy) =ninfe ™ (2)dz

The performance index becomes r*(g) =nr*(g,) where

T*g,) = nEn Mo(u,g,)+M,(u;g,) (6.18)
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After inserting this result into (6.13), the bound on false dismissal proba-

bility becomes

1Sgi<| el (6.19)

Thus, the bound on this error decreases exponentially with the number of

data observations.

Two detectors, g and A, may be compared by computing their rela-

- iy (20,8)
g (GO»B) '

observations in the respective detectors operating with false alarm rate

tive efficiency, where REg h the ratio of the number of

no greater than ag and probability of correct detection at least §. While
7*(g) does not allow computation of the exact value of B, it does allow
computation of a bound_on 1-6.

Proposition 3. Suppose two memoryless detector nonlineari-

ties g and h operating on iid distributed observations each

use mn, and n, data observations, respectively, and

Th_ _ T*(g1)
g T’(hl)

. Then

l_en,r'(gl) . _l_enur‘(m)
125 g

Proof. The proof follows from direct computation®

T*(g,)
r*(hy)

The quantity may be designated as the relafive bound efficiency

of detector g relative to detector A. Thus

_7*(gq)

RBEg 4 = 50 (6.20)
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is a measure of the relative rates of convergence in the false dismissal
probability of two detectors operating with equal false alarm rates. Alter-
natively, it may be considered as a measure of the ratio of the number of
samples needed in each detector to obtain equal bounds on the false
dismissal probability for equal false alarm rates. Note that (6.20) extends
easily by replacing 7*(g;) with 7*(g). Thus, the RBE of two detectors may

be compared for non-iid noises, and detectors with memory.
A related measure of efficiency is the Chernoff asymptotic relative
efficiency [2,11], or ARE; - defined as

min {n}‘inMo(u;g), m&an(u;g)]

ARES ; =
g.h mm[minMO(u;h),nﬁan(u;h)]
u u
The proposed measure RBE differs from ARE® in that RBE measures the
relative rates of convergence of 1—8 under equal false alarm rates for the

two detectors.

Detection of a Known Constant Signal

An often discussed special case is the problem of detecting the pres-
ence or absernce of a known constant signal in the presence of an additive
iid noise. When the signal is positive, this problem is sometimes is known
as the shift-to-the-right problem. The univariate noise densities under
the respective hypotheses become

Folz) = f(z)
fi(z) = f(z-65)
where 6 is the known constant signal amplitude, and f is the univariate

density of the additive noise. For convenience, and without loss of
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generality, we shall hereafter assume s =1. A common situation is for
the noise to have zero mean, and for the density to be symmetric about
the mean. The optimal detector will then be odd-symmetric about the
point 8/2. Under these conditions, we have |

Proposition 4. [f

fi(z) =Ffolz-6) (6.21)
folz) = fol-2) (6.22)
9|%-~z| = ~g| 5 +z (6.23)

then M(uw;g)=Molu.g).

Proof. The proof begins with the definition
Miy(u;g)=1n fe"‘g(’)fl(:z:)dx
Applying (6.21) yields

Mi(uig) =1n [e™2)f (z)dz

=1n fe_ug(9/2+(z+9/2))fo($)i'5
and applying (6.23) gives
My(u:g) = In~fe¥E)f (—z)dz

Finally application of (6.22) yields the desired result

My(u;g) = Mg(u;g)
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It is possible to show in the shift-to-the-right problem thét, as the
signal vanishes, the quantity RBEg'h for two detectors approaches

asymptotically the value of AREg R

Theorem 4. In the shift-to-the-right problem, with iid noise

T

n n
and detectors g(x)= } g(z;;6) and h(x) = Y h(z;;0) that are
=1 i=1

odd-symmetric about 8/ 2, with test structure (6.6), and with
test thresholds Eog=<{;<E;g and Egh<f, <E,h, respec-

tively, let the false alarm rate be equal in both tests. Then
g{% RBEg A = AREg,h
Proof. The power of the test using g is

By = Prob{g (x)antg ! Hl]

= Prob{h(x)<ntg | Ho]

and similarly for 8. By application of Chernoff’s theorem (8,

11] it may be shown after some simple algebra that

lim 1—lnProbrg (x)=2nt, | Hl] (6.24)
n -7, l. g

= min |—ulg +M1(u;—g)]
u
and that

g [
Jim ~~InProbjg (x) <nt; | H| . (6.25)

= nEn ut, +M0(u;—g)J

independently of the value of 8. By Proposition 4,

Mo(u;—g)=M,(u;—-g). Therefore
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min [—utg +My(uw;~-g) (6.26)
u

= ¥min [Mo(u; —g—tg) + M(u;-g +tg)]
u
and

min [utg + Mo(u;—g) (6.27)

= Ymin [Mo(u; —g+ty) + My(u;—g—t,)

However, (6.24) and (6.25) imply that (6.26) and (6.27) must
be equal. As a consequence of Proposition 1, they are equal
to ¥r+(g).

Following Capon [9], let {6,{ be a sequence of signals "

such that %irn 6, =0, and let the sequences {ng.;{ and {n,}
be two increasing sequences of integers such that

0# gim By (Gk Mg ) =klim Brn(Br.mpi) # 1 (6.28)

Since the nonlinearities g and A are functions of 9, we will
denote the sequences of nonlinearities dependent on {6;} as

9r and hy, respectively. Then
gim InBy(6r.ngx) = %im InProb[g,(x)=nt, | H;]

and similarly for detector h,. The ratio of false dismissal

probabilities for the two detectors may be written as

Toh ke lnﬁg(ekvng;k) o Tk lnPrOb{g (X)Eng:kty iHll

g I0Bn 6k Mne) Ng & ]nProb[g () =np i tp !H1]

(6.29)

By previous arguments, it follows that in the limit the right
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side of (6.29) becomes the ratio

_ T*(gx)

R T () (6.30)

which by the definition (6.20) of RBE is the quantity

%im RBEg’c Ry Condition (6.28) assures that in the limit the

powers of detectors g, and h; are equal, which reduces the
left side of (6.29) to the definition of asymptotic relative

efficiency

Mk _
’}12 o = AREWL

The conclusion then is that as -0, the quantities
RBEg p and AREg p are asymptotically equivalent. Note that

in the limit, nonlinearities g; and h; are odd-symmetric

about the origin. ®

Numerical Examples

In this section, the performance index is calculated and compared
for three different detector structures in two different noise environ-

ments for the shift-to-the-right problem. The objective is to decide

between
Ho: z; ~ f(z;)
for 1=1,...,n and 8>0
Hy: z; ~ f(z;-6)
using a test
H,
>
Zg(x‘i) < ¢
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The three detector nonlinearities which will be examined are the linear

detector
Ju(z) = 6(z-6/2) (6.31)
the sign detector
gsa(z) = sgn(z-6/2) (6.32)
and the amplifier limiler
-6v2 for —o<z <0
Ju(z) ={2V2(z—-6/2) for 0<z <8 (6.33)
6v2 for 6<z <

The two densities which will be used are the Gaussian density

folz)= e/ : (6.34)
and the Laplace density
filz) = ig_z—e‘“é"' (6.35)

The three detectors are illustrated in Figures 6.1 - 6.3. Note that giy(z) is
the Neyman-Pearson optimal nonlinearity for f = f;, and gyg is the NP
optimal nonlinearity for f = f.

The methods of this chapter may be applied to calculate r*(g), and
the RBE of various pairs of detectors under the two noise environments.
Appendix 6.1 gives the formulation of 7(w;g;f ) for all six combinations of
detector nonlinearities and densities. Here, f appears as an argument of
T to emphasize the dependence of 7*(g;f ) on a single univariate density.

For some combinations of nonlinearities and densities, 7* or u* is given,
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Fig. 6.1. The linear detection processor Gig fore=1.

2
1.
gaz(l‘) 0
L=
2
-1 L
-2 y 3 2 ). e L
-4 -2 0 2

z

Fig. 6.2. The amplifier limiter detector nonlinearity gq for
=1
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gsd(z) 0

Fig. 6.3. The sign detector nonlinearity gog for 6 =1.

A i i 1 g

-30 -20 -10 0 10 20 30

20logo 6

Fig. 6.4. Performance comparison of the amplifier limiter
and the sign detector relative to the linear detector in Gaus-
sian noise. -
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but for others this value must be found through numerical methods.

Figures 6.4 and 6.5 present the RBE of the detector pairs under Gaus-
sian and Laplace noise assumptions, respectively. Since both demnsities
were defined with unit variance, the horizontal axis of the plots is also a
measure of the signal-to-noise-ratio (SNR). The nonlinearities are
parameterized as a function of &; thus as 6 becomes small the shape of

ga and gsg become nearly identical relative to a fixed observation scale.

As predicted in Theorem 4, RBEd'ld and RBEsd,ld asymptotically
approach AREg, ;4 for small 6. When the SNR, (equivalently, 6), becomes
large, RBE; ;4 approaches unity for both densities, implying that under

this condition the amplifier limiter and the linear detector have the same

efficiency. Also, RBEsd,ld converges to %, as shown in Appendix 6.2.

For comparison, the ARE of various detector pairs may also be calcu-
lated as a function of the parameter 6. For the purpose of calculating
eflicacy, it is assumed that the nonlinearities are symmetric about zero
instead of 6/2. Therefore, in Appendix 6.1 the efficacy is given for the
shifted nonlinearities g(z+6/2). Figures 6.6 - 6.11 compare RBE and

ARE for pairs of detectors under the different noise assumptions.
All six of the figures further emphasize the convergence of ARE; ;4.
RBEa.l,ld' and RBE 4 ;4 for small 6. The performance of the amplifier

limiter and the linear detector are approximately equivalent for high
SNR, as shown by both ARE and RBE. Notice that, while ARE predicts a
constant performance level for the sign detector, Figures 6.8 - 6.11

emphasize that the linear detector or amplifier limiter may well outper-
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20log9 6

Fig. 6.5. Performance comparison of the amplifier limiter
and the sign detector relative to the linear detector in
Laplace noise. i

=30 -20 ~10 0 10 20 30
20 lOg 10 9

Fig. 6.6. Comparison of ARE and RBE of the amplifier limiter
relative to the linear detector in Gaussian noise.
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1.75¢

1.5t

125 n AREG.!,E:I_/

-30 -20 -10 0 10 20 30
20logp 6

Fig. 6.7. Comparison of ARE and RBE of the amplifier limiter
relative to the linear detector in Laplace noise.

.65
61
Rololl ¢
5 . . : " A
-30 -20 -10 0 10 20 30

20 loglo e

Fg. 6.8. Comparison of ARE and RBE of the sign detector
relative to the linear detector in Gaussian noise.
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5 : . . . .
-30 20  -10 0 10 20 30
20log,, 6

Fig. 6.9. Comparison of ARE and RBE of the sign detector

relative to the linear detector in Laplace noise.

.
1.75} RBEy g —=
1.5}
AREq; sd

1.25F

1 : : ; ; :

-30 -20 -10 0 10 20 30

20log9 @

Fig. 6.10. Comparison of ARE and RBE of the amplifier lim-

iter relative to the sign detector in Gaussian noise.
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2
1.6}F RBEu,sd
1
L /_ AREM.SE‘
D
0 = ; i , ;
-30 -20 -10 0 10 20 30

20logg 6

Fig. 6.11. Comparison of ARE and RBE of the amplifier lim-
iter relative to the sign detector in Laplace noise.
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form the sign detector for modexl'ate to high SNR. Michalsky, Wise and
Poor [12] studied the convergence of relative efficiency to asymptotic
" relative efficiency in the finite sample size detector and observed similar
difficulties with ARE. They also found that in certain cases relative
efficiency may produce a different ranking of detector performance than

would asymptotic relative efficiency

3. Conclusion

Some properties of a functional 7 *(g) were developed in this chapter,
and it was shown that r*(g) is a performance measure which may be
Potentially useful for studying the performance of finite sample size
detectors. In this regard, it may be considered as a figure of merit, or a
performance index for a detector. As was demonstrated, r*(g) is a quan-
tity which may be used to form an exponential bound on 1—8. Thus, the
smaller the value 7*(g), the smaller the bound on false dismissal proba-
bility. Given a pair of hypotheses, 7*(g) may be used to rank competing

alternative structures.

A disadvantage of bounding methods is that it is not clear that com-
paring and ordering systems by a performance bound corresponds
exactly to an ordering of the systems by their error probabilities.
Indeed, we resort to a bounding method precisely because we are unable
to calculate, (and hence, order by) the error probabilities of the alterna-
tive systems. A bound is useful for comparing the relative merits of sys-
tems, though, for a bound guarantees a certain minimum performance
level. As a result, it is reasonable to say that the tightest bound

corresponds in some sense to the "best” system.
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Of particular utility is the ratio of respective r#(g) indices for two
competing detectors. This ratio was denoted as relative bound efficiency,
or RBE, as was shown to be asymptotically equivalent to ARE as the signal
to noise ratio vanishes. For finite SNR, however, the behavior of RBE
diverges from ARE and follows more closely intuition about the relative

efficiency of several common finite sample size detectors.
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Appendix 6.1

In the previously stated conditions of the shift-to-the-right problem
r(u,g) = 2M,. Therefcre, for the six combinations of nonlinearities and
noise densities, an expression for My will be given, and when a simple
form can be found, an expression for r*(u;9). For comparison, the
expression for efficacy of the shifted (zero-centered) nonlinearities are
also given. The cumulative distribution of the Gaussian density is written
here as $(z).

1. Gaussian density, linear detector

T(u:gwife) = u(u—1)6% (A6.1)
7*(gw:fe) = —%2- (A8.2)
nelgu(z+6/2,6)) =1 (A8.3)

2. Gaussian density, sign detector

T(u;gsq;fc) =2lnle ™ ®(6/2)+e*d(-6/2) (AB.4)
7*(gsa;f¢) = 2In2+1n®(6/ 2)+Ind(—6/ 2) (AB.5)
ne(gea(z+6/ 2:6)) = 2 (46.6)
3. Gaussian density, amplifier limiter
r(uiga:fe) = (46.7)

2 @(9—2\/§u)—¢(—2\/§u)] exp[—(\/§u6—4u2)
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(1-e(-6/2))"

Ne(gu(z+6/2):0)) =

Here, I' is the incomplete gamma function
T
MNz.y) = fe TrV-igr
0
4. Laplace density, linear detector
7(u;914;f1) = 2In2 —u6? —2In(2—u?6?)

—1+V1+6%/2

u*=2 P

(g (z+6/2;6)) = 1

5. Laplace density, sign detector

e—oV2/2
T(u';gsd;fL) =2In e™*+ —Z—(eu—e'u)
-V30/2
r*(GeaifL) = mz—eziﬂn 1~

N(gsa(x+6/2;08)) =2

6. Laplace density, amplifier limiter

T(WigaifL) =

21n e—1t9‘/§+e(u—l)9‘/§ + e-uG\/-Z- —
V2(1-2u)

(A6.9)

(A6.10)

(AB.11)

(AB.12)

(A6.13)

(A6.14)

(AB.15)

(1—e (RQu-1)eV2 ) —In2



-198-
T*(9a;f1) = Rln [e V(24 6)]—21n2 (A6.16)

(1 —e ~V2g2/ 2] 2
e—V2er2 (A6.20)
1- —T—(Qz'i' 9\/§+2)

NL(Gu(z :9'9/ 2;8)) =
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Appendix 6.2

Here it is demonstrated that RBEsd' 1q @Pproaches asymptotically the

~ value % for the shift-to-the-right problem and iid observations. To begin,

let p=F(6/2), where F is the cumulative distribution function of the

noise density. Then
Mo(uigq) =1n e ™p +e"(1—p)] (A6.18)
and it is easy to show that u*=%ln # Using this value of u*,
T1*(u*gsy) =Inp+In(l—p)+2In2 (AB.19)

for, as a consequence of Proposition 4, 7, =2HM,,.

It may be shown [10] through a saddlepoint expansion approach that
In(1-p) = Mo(u*gy)+e(lne—4) (A6.20)

where € represents the approximation error, of order lne=% Using

(A6.19) and (A8.20) the ratio RBE;y ;g may be written as

T1*(4*9ea.f) _ Inp+In(1—p)+2In2
Tt (utgy.f) 2In(1-p)+2&(67%)

(AB.21)

Finally, after noting that éimp=1 and applying L'Hopital's Rule to

(A6.21), we conclude that

lim RBEgy 13 = % (46.22)



(1]
(2]

(3]

[4]

6]

[7]
(8]
(9]
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Conclusion

In this chapter, the main contributions of the dissertation are

reviewed, and some suggestions for extending this research are made.
1. Review and Suggestions

Chapter 2

Detection procedures and noise models were highlighted in Chapter
2, and the failings of the classical Gaussian noise assumption were noted.
As an alternative model, a definition of non-Caussian noise density was
given, and several commonly used non-Gaussian noise models were exhi-

bited.

The critical feature of non-Gaussian noise as defined here is the fact
that the density is much heavier tailed than the Gaussian density. In this
type ol delection environmeunt it is importanl to reduce the influence of

the very large observations; even just a few impulses, or outliers, can

-801-
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seriously disturb detector performance.

Finally, in light of the work in robust statistics, and the work in
optimal detection in non-Gaussian noise, it was proposed to examine sim-
ple adaptive detectors which are useful when only a very loose character-

ization of the noise statistics is available.

At the end of the chapter, some Arctic under-ice noise data was dis-
cussed. It would be interesting to study its characteristics further, par-
ticularly examining its distribution and dependency structure. Does the

data fit any commonly used models?

Chapter 3

The following conjecture was proposed and exploited succeséfully:
Suppose some generic detéctor nonlinearity with a roughly linear region
near the origin is chosen thal allows freedom in selection of the non-
linearity tail behavior. Then, it should be possible to make measure-
ments on the observed noise and adjust the nonlinearity tails appropri-

ately.

Two alternatives techniques were proposed and studied: the tail
matching method, giving g,,, and the efficacy maximizing procedure,
leading to the piecewise linear processor g,. In the examples, both
methods were able to achieve high levels of performance relative to the
optimal structure, even though both nonlinearities were ad hoc proposals
and only very simple measurements of the noise density were used io
drive adaptation. When simulated with the physical noise data, both

detectors appeared to have improved performance relative to the linear
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detector.

The conclusion to be drawn from the chapter is that, when choosing
the form for a nonlinearity, it is not critical to find the exactly optimal
structure. Rather, it is possible to achieve nearly optimal results using
quite simple structures, provided that there is enough freedom to adapt
the structure to the particular noise densilty of interest. As noted in
Chapter 2, the specification of a particular class of non-Gaussian densi-
ties leads to generic specification of the class of suitable approximate

nonlinearities.

It would be worthwhile to investigate further certain properties of

suboptimal detectors. For instance, the performance of a suboptimal

- nonlinearity is sometimes less sensitive to changes in.the noise environ-

ment than the optimal nonlinearity. What causes this property, and how
may it best be employed? Can other methods besides Huber’s min-max

approach produce robust detector nonlinearities?

Chapter 4

When a nominal background noise is contaminated by bursts of
impulsive noise, it was shown that it is possible to design a structure
which recognizes the bursts, and then uses this information to adapt the
detector rapidly. The structure was developed in two parts: one part was
a time varying detector which switched between two nonlinearities, and
the other part was a nonparametric noise bursi detector utilizing a

median filter. g

Under one reasonable and realistic set of assumptions, it was demon-
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strated that the switched burst detector can outperform any fixed detec-

tor structure.

One problem mentioned in the chapter and worthy of further atten-
tion is analysis of the switched burst detector algorithm when a statisti-
cal model for Lhe noise burst lengths is available. Also, given a statistical
description of the burst run lengths, how may the nonparametric burst
detector be improved? Probably, this knowledge would lead to a thres-
hold test where the threshold varied as a function of the number of

observations since the last state transition was encountered.

Another important area to be investigated is the use of alternatives
to linear detectors during the impulsive noise modes. Would any perfor-
mance advantage due to the use of robust nonlinearities outweigh the

loss of simplicity when the low gain linear alternative is replaced?

Chapter 5

In Chapter 5 the equivalence between efficacy maximizing pro-
cedures and minimum mean square approximation of the true locally
optimum nonlinearity is demonstrated. In particular, the results lend
substance to some loose ideas about what constitutes a "good" approxi-
mation: it is important to match the optimal nonlinearity closely in the
regions where an observation is highly probable, while a rough approxi-
mation is sufficient in low probability regions such as the density tails.
Moreover, once an approximation is fairly “close” to Lthe true nonlinearity,
further refinements lead to little performance improvement. This is not
to say that any nonlinearity tail behavior will suffice; the mean square

error between a linear processor and blanking nonlinearity tails can be

o
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great, despite weighting by a relatively small probability mass, and it is
known that the linear processor performs poorly in heavy-tailed noises.
This chapter ﬁrovides a distance measure between nonlinearities. Is
it possible to find a min-max robust suboptimal nonlinearity using this
tool? Another useful extension of this work might include examination of

uonlinearity approximation procedures in the dependent noise case.

Chapter 6

A performance index 7*, useful for comparing detectors operating
with equal false alarm rates, was developed in Chapter 6. It was shown
that the ratio of performance indices for two detectors is a useful indica-
tor of their relative performance under non-zero signal to noise ratios.
Further, this ratio, the proposed measure of relative bound efficiency,
approaches the measure of asymptotic relative efficiency as the signal

vanishes.

It would be worthwhile to examine r* and relative bound efficiency
further. For instance, it would be interesting to examine their use in
dependent noise. There are other open points: how does relative bound
efficiency compare to relative efficiency? How tight is the bound on per-
formance using 7*? Is it possible to find 7* directly and circumvent the

proposed minimization procedure?

2. Conclusion

The underlying goal of this study was to consider the signal detection
problem in the case of incomplete knowledge of the non-Gaussian noise

environment. In striving towards this goal, work was presented ranging
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from simulations using physical noise data to theoretical analysis.

The theoretical results of this thesis may be useful tools in the con-
tinued study of nearly optimal detectors. The proposals for detector
structures presented here are not definitive; however, they do confirm
some ideas about usefﬁl approaches to this problem, and point out possi-

ble directions for further research.
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